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FOREWORD

The following engineers made a significant technical contribution to this
project: WH Pfeil designed the preliminary LQR power turbine speed governor
on which the final LQR design was based; WL Miller did the research on

of f-schedule variable geometry effects; DR Gilmore, Senior Engineer, provided
technical supervision for the entire project.
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1.0 Summary

Advances in digital hardware design allows engineers to take advantage of
research results in modern control theory that provide a systematic approach
for improved control system design. Such designs require accurate linear and
nonlinear models for synthesis and evaluation of the control laws. The
purpose of this research was to design a high performance power-turbine
governor for a recent technology turboshaft engine and articulated rotor
system, and concurrently to evaluate the linear and nonlinear models using
engine test data.

The governor was designed using the Linear Quadratic Regulator (LQR) approach
with a Kalman Filter (KF) observer. The LQR governor regulates power turbine
speed by summing the product of calculated gains and system states. The
system states characterize the dynamics of interest at every time. There
exists one state for each independent energy storage element, and the states
are chosen by the engineer. The LQR gains are calculated from a linear state
space model of the engine and helicopter rotor system. This model is a system
of first order differential equations that are functions of the state
variables and the inputs. The LQR is designed as though all the states are
measured. The helicopter main-rotor blade angular velocity cannot be measured
in flight and was estimated using a Kalman Filter observer. This observer is
a closed-loop system that contains a simplified 1inear model of the helicopter
rotor system. The Kalman Filter design parallels the LQR design. The
estimated rotor-blade angular velocity is used in place of a measured value
with no change in the LQR gains. The resulting governor has a bandwidth of
about 6 rad/sec compared to a bandwidth of about 3 rad/sec for current
controllers.

The linear and nonlinear models were evaluated using engine test data. The
model of off-schedule variable geometry effects in the nonlinear model was
evaluated by using steady state and transient engine data recorded with the
variable geometry off schedule. This analysis did not indicate that a change
was necessary in the current model.

Research also focused on evaluating a more efficient frequency response method
than the sinusoidal input technique. A Pseudo Random Binary Noise (PRBN)
signal containing all frequencies in a range of interest was superimposed on a
steady state input. A maximum 1ikelihood analysis was used to compute the
frequency responses from fuel flow input to power turbine speed and gas
generator speed outputs. The results were compared to results of the standard
sinusoidal input response and the linear design model response. The PRSN
method was shown to be effective in computing frequency response, and the
results indicate the need for further analysis of frequencies where there are
discrepancies between the actual engine response and the model response.



2.0 Introduction: Modern Control Power Turbine Governor

The maneuverability requirements of successive generations of helicopters have
jncreased dramatically, yet only recently have the important relationships
between engine controller characteristics and helicopter handling qualities
begun to be explored (Ref. 1, 2). A continued emphasis on nap-of-the-earth
flying capability and reduction of pilot workload has initiated further
investigation into this critical relationship. The NASA/Army Small Turboshaft
Engine Research (STER) program has aided this research by providing the
opportunity to evaluate the Linear Quadratic Regulator (LQR) control of a
recent-technology turboshaft engine (Ref. 11). The STER program consists of a
series of joint Army Propulsion Lab and NASA Lewis Research Center tasks to
investigate advanced technology on a complete engine system.

The control of turbine engines based on optimization techniques has received
significant attention in the past decade (Ref. 3, 4), LQR controllers have
been designed for the F401 (Ref. 5) and F100 (Ref. 6) turbofan engines.
Although some preliminary work was done on an LQR for the T700 turboshaft
engine (Ref. 7), most of the work has focused on turbofan and turbojet
engines. The current research applies LQR technigues to the design of a
power-turbine governor for a turboshaft engine. The resulting control law,
now facilitated by the continuing emergence of digital technology, promises to
provide a system with increased capabilities.

The purpose of a power turbine governor for a helicopter application is to
maintain constant power turbine speed in the presence of load changes to the
helicopter rotor system. These changes can come about by pilot initiated
actions or by wind gusts. When the power turbine speed is constant, the main
rotor speed is also constant (for nonautorotation), and the pilot modulates
horsepower by changing the collective pitch angle of the main rotor blades.

The power turbine governor is a regulator: a controller that functions to
maintain a system parameter (NP) equal to a setpoint. The torsional dynamic
jnteraction between the helicopter rotors and the power turbine shows up as
resonant peaks on a frequency response plot. The first peak is due to the
interaction of the main rotor with the power turbine, and the second peak is
due to the interaction of the tail rotor with the power turbine. The
frequency range and height of the resonant peaks vary with helicopter rotor
inertia, damping, and spring constant. These peaks are at high frequency
compared to engine dynamics and are in the range where the system dynamics are
not accurately known. For this reason, each resonant peak must be attenuated
at least 6dB. This requirement has limited the bandwidth of existing
controllers to about 3 rad/sec.



A power turbine governor designed using the Linear Quadratic Regulator
technique attenuates the main rotor resonance such that the bandwidth of the
system can be increased. This is indicative of a more responsive power
turbine governor that will better attenuate disturbances to the power turbine
coming from the helicopter rotor system.

The Linear Quadratic Regulator (LQR) is a regulator that computes the input to
the system (in this case, WF) as a sum of the product of gains and the system
states. The system states are those parameters that fully characterize the
system at any point in time. That is, when the values of the state variables
and the inputs to the system are known, all other system parameters can be
calculated. There is one state variable for each independent energy storage
element in a system. The design engineer makes the choice of state variables
which are not unique for a system. The state variables are chosen from a
Jumped-parameter, linearized model of the system that retains the significant
dynamics.

An observer was used in conjunction with the LQR governor. An observer is a
closed-1oop system containing a model of part or all of the system and is used
to calculate a state variable that is not measured by sensors. This estimated
state-variable is then used by the LQR as though the state were measured. The
observer was used to calculate helicopter main-rotor tip velocity.

2.1 Linear Quadratic Regulator (LQR) Design Procedure

2.1.1 Engine-Rotor System Model

The LQR design process begins with a 1inearized, state-space model of the
system; in this case, the engine and helicopter-rotor system. The model was
linearized at six engine power settings from flight idle (FI) to intermediate
rated power (IRP). A model for autorotation was not done for this study. The
model of the engine is based on partial derivatives calculated from an
accurate nonlinear model. The linear model of the rotor system is a generic
model of an articulated rotor system that has been used successfully at
General Electric for power turbine governor design. Figure 2.1 shows the
combined engine and rotor system model block diagram.

The engine model as shown has P3 and T45 effects and two inputs - WF and
variable geometry (VG). The P3 and T45 dynamics were neglected as they are
assumed fast compared to the other dynamics. The VG input was investigated as
a way of improving power turbine governing, but was shown to make no
improvement. This is discussed in Section 2.5. This simplified model, which
is used for calculating the LQR gains, is shown in Figure 2.2. The tail rotor
dynamics were neglected because they are at high frequency compared to the
main rotor dynamics. Note that this engine-rotor model is valid only for
small deviations around the point at which it was linearized.
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2.1.2 Rotor Model

The full, 1inear rotor model is shown in Figure 2.3. This lumped-parameter
model is used for frequency response testing, but is unnecessarily complex for
the LQR design. This model was simplified to the model shown in Figure 2.4.
It accurately retains the dynamic characteristics of the rotor through the
main rotor frequency. The engine-rotor model of Figure 2.2 with the
simplified helicopter rotor system was compared to the model with the more
complex rotor system by comparing the frequency response of each system from
WF input (more correctly d (WF)/dt input - see Section 2.1.3) to NP output.
The Bode plots comparing the simplified and complex rotor systems as mentioned
above are included in Appendix I. For rotor systems that do not have a large
frequency separation between the main and tail rotor resonances, the tail
rotor dynamics may need to be included in the model used for LQR design. The
nonlinear engine model used for transient testing has this simplified
helicopter rotor model with simplified tail rotor dynamics. This model is
shown in Figure 2.5.

The rotor model parameters were maintained constant for all power levels. The
aerodynamic damping varies with power level, but this was maintained constant
for frequency response analysis. The centrifugal spring constant arises from
the rotation of the rotor. If the constitutive relationship for a torsional
spring is

Q =K#6 (2.1)

where Q is the torque caused by the centripetal acceleration on the main rotor
blade and 6 is the lag angle as defined in Figure 2.6, K is known as the
centrifugal spring constant. This constant actually varies proportionally to
the square of the main rotor angular blade velocity (Ref. 14). Nominally, the
blade angular velocity is constant at all power levels. This velocity changes
during rotor droop. For frequency response analysis, to assure adequate
stability margins, this spring constant was varied about the nominal
c?rzesponding to a + 10% change in rotor speed. A1l rotor models assume rigid
blades.

2.1.3 Integral Augmentation

The LQR design does not add any dynamics to the system. If isochronous NP
governing is required, an integrator must be appended to the engine model.
This integrator is added to the system input, as shown in Figure 2.7. The
system is later transformed such that the input to the integrator is the
difference between the power turbine speed reference and the actual speed, as
required to have isochronous governing. The integrator is actually part of
the controller, but for the LQR design, it is considered part of the plant.
Several design iterations were tried with the integrator appended directly to
NP, but the results were not as good as for the integrator added to the WF
input.
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2.1.4 State Variables

The state variables of a system are not unique, but often the system dictates
a particular set. This is the case with the engine-rotor system. The engine
states were chosen to be gas generator speed, NG, and power turbine speed,

NP. These states are already measured in the real engine. The main rotor
angular velocity (recall the models assume rigid blades) was also chosen as a
state. This state is not practically measurable and was estimated using an
observer. This will be discussed more fully starting in Section 2.2. The
other state associated with the rotor is the rotor torque arising from the
lag-hinge damper and the centrifugal spring. This state is not measurable but
is approximated by engine shaft torque. This approximation is at least in
error by the torque absorbed by the tail rotor and the aerodynamic damping,
and there is a noticeable adverse effect seen on frequency response results
when the engine shaft torque is used instead of the actual main rotor torque
state, as discussed in Section 2.3.2.1. The last state is the output of the
appended integrator. This state is WF and thus the input to the integrator is
dWF/dt. A1l of the states were chosen as the outputs of integrators with the
slight variation of adding the lag-hinge damping to the rotor “spring" state.

For some rotor systems, it may be necessary to include the tail rotor dynamics
in the design. This would add two more states to the system - a tail-rotor
torque state and a tail-rotor speed state.

2.1.5 System Equations

The equations of the system are derived as a set of first order differential
equations that are functions of the state variables and the inputs. Because
of the appended integrator for isochronous governing, the input to the system
is the derivative of WF (refer to Figure 2.7). This is only a mathematical
input for use in deriving the LQR gains. The first order differential
equations are then put into the general matrix state-space form:

Ax=AAx+BAu (2.2a)
Ay =TAX (2.2b)

where A x is a vector (column matrix) of states, A x is the first derivative
of the sTates with respect to time (dA x/dt), A u iS the input (WF), and A, B
and C are matrices of coefficients. A Z:is a matrix of outputs, and each™ ~
element of Ay is a linear combination of the states, A x. A and B vary with
power level from FI to IRP, but are constant at each power level. A'x and A u
generally vary with time. A block-diagram representation of the system in
matrix state-space form is shown in Figure 2.8. The A's emphasize that the
model is only valid around the steady state point.

The equations are put into matrix form rather than the more traditional and
equivalent transfer function representation to facilitate the application of
the LQR design. Transformation from transfer function to state-space form is
possible by replacing the Laplace operator s by d/dt and transforming the

12
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resulting n'th order differential equation into a system of n first-order
differential equations.

The state space equations for the engine-rotor system of Figure 2.7 are given
in Figure 2.9. The equations can be derived from the block diagram of

Figure 2.7 by starting at the input to each integrator (A x) and working back
through the diagram until AXx is only a function of constants, state
variables, or the input. A 1ittle more algebraic manipulation is necessary to
get the equation for the rotor torque state.

2.1.6 LQR Design

The Linear Quadratic Regulator (LQR) computes the input, WF, to the system as
a sum of the product of gain and the system states. The form of the regulator
is shown in Figure 2,10, Figure 2.10 shows the compact matrix block diagram
that compares with the uncompensated system of Figure 2.8. This controller is
a perturbational controller in that it calculates an incremental WF needed to
regulate the system based on the deviations of the states from reference
values. Except for the reference value of power turbine speed, NP, the
references only need to be approximations of the values at steady state. The
WF reference is added to the incremental WF to get the total WF demanded by
the controller. The integrator on NP error assures convergence of the actual
NP to the reference NP, and makes up for approximations in the other reference
values.

The LQR design is different than the standard governor design because the only
dynamic element added is the integrator. Also, the internal makeup of the
system (the states) are used for compensation rather than the input-output
characteristics (transfer function) as used in standard compensation design.

The compensation shown in Figure 2.10 is called linear, state-feedback control
because each of the states is fed back and combined linearly to calculate the
WF input to the system. For controllable systems, it is possible to calculate
the gains, G, such that the poles of the system can be placed anywhere in the
s-plane with the restriction that complex poles be placed as complex conjugate
pairs. A system is loosely defined as controllable if the control can affect
all of the natural modes of a system. Power turbine speed in the T700 engine
is controllable from fuel flow. More discussion on controllability can be
found in Ref. 9. The Linear Quadratic Regulator method places the poles in a
way that minimizes a certain cost functional chosen by the control engineer.

2.1.7 LQR Theory

The LQR method calculates the matrix of gains, G, such that a cost functional,
J, is minimized. In general, the gains, G, vary with time, but for the
special case where the system of Equation 2.2 is asymptotically stable (all
poles are in the left-half plane), the gains, G, reach a steady state value as

14
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time approaches oo. These steady-state gains can be used in place of the
time-varying gains, and the resulting closed-loop system will remain
asymptotically stable, generally with no loss in performance.

The cost functional, J, has the form:
[ <]
3=/ to [xT(t) Q x (£) +ufy) Ru (t)] dt (2.3)

where x(t) is the state vector, u(t) is the input vector, xT denotes the
transpose of x, and Q and R are Weighting matrices chosen by the design
engineer. Choosing Q and R will be discussed in Section 2.1.12. The A's
have been dropped from the notation, although the small-perturbation
restriction still applies.

The cost, J, is a functional because it is a function of functions x(t) and
u(t), however, J has a scalar value.

The closed-100p control law is:
u(t) = -G x (t) (2.4)

The cost, J, is minimized for the system of Equation 2.2 and the weighting
matrices Q and R when the gains, G, are calculated by:

G=R18TS (2.5)
where R is the weighting on the control, B comes from the system differential
equation, and S is the solution to the algebraic Ricatti Equation:

0=0-SBRIBTS+sSA+ATS (2.5)

Q is the state weighting, and A and B are the coefficient matrices from the
system differential equation. 0 is a square matrix of zeros.

Calculating the gains, G, consists of choosing nonnegative, symmetric Q and R
matrices (to assure a unique solution), solving the algebraic Ricatti Equation
to get S, and then computing G from Equation 2.5. The difficulty in the
procedure comes in choosing Q and R to get the desired performance results.
Magy software packages exist that will compute G given the matrices A, B, Q,
and R.

2.1.8 Properties of the LQR

Several characteristics of a closed-loop system designed via the LQR method are
mentioned here. A continuous LQR system has guaranteed 60° of phase margin and
-1/2 to oogain margin when the loop is broken at the system input. The system
input is not WF when an integrator is added to a system, it is the input
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to the integrator. In Section 2.1.10 it will be shown that this can be trans-
formed such that the guaranteed phase and gain margins are at the WF input to
the plant. These guaranteed margins do not hold for systems that are sampled
by a computer, or for systems where one or several states cannot be measured,
and an observer must be used to estimate states. For a single-input-single
-output system, these restrictions do not present a problem since the system
can be analyzed using standard frequency response techniques. For
multi-input-multi-output systems, analysis techniques based on singular values
have been developed, but they must be used with caution when a system does not
meet the assumptions of the techniques. Another property of the LQR system is
that it has a high-frequency roll-off in the frequency domain of -20
dB/decade. Generally, a steeper roll-off is desired to attenuate noise, and
this was achieved using analog anti-alias filters.

2.1.9 LQR Theory Applied to the T700 Engine

The LQR method requires that all states be available for feedback to compute
the input to the system. The five states of the engine and rotor system are
summarized below:

NG Gas generator speed

NP Power turbine speed

WF Output of appended integrator

NMR Helicopter main-rotor velocity

MR Helicopter main-rotor torque due to centrifugal spring and

lag-hinge damper

The first two states are currently measured on the T700 engine. The third
state is computed in the control and is, therefore, available. The last two
states are rotor states and are not measured. Engine shaft torque is used to
estimate QMR. This will be discussed in more detail in Section 2.3.2.1. NMR
cannot be estimated accurately with currently measured signals, so it was
calculated, or reconstructed, using an observer of the rotor system. The
observer is a closed-loop system that contains a model of the rotor system to
estimate the rotor system states. The estimated main-rotor velocity, NMR, is
then fed back in place of the actual state, NMR, to calculate the WF input.
The LQR gain matrix, G, remains the same.

The observer system is designed as a separate control loop independent of the
main LQR loop. Note that the entire system that includes the observer no
longer has guaranteed phase and gain margins. The system has to be analyzed in
the frequency domain to determine actual stability margins. The observer is
discussed in detail starting with Section 2.2.
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2.1.10 Transforming LQR Gains for Isochronous Np Governing

The LQR method for this system with integral augmentation produced the best
performance results when the integrator was appended to the input. This
system is shown schematically in Figure 2.11. For isochronous NP governing,
the system must be configured as shown in Figure 2.12, The gains, 57 and

Gp, calculated for the format of Figure 2.11 can be transformed to The

gains, L and H, of Figure 2.12 using a transformation derived in Ref. 12. The
quaranteed gain and phase margins mentioned in Section 2.1.8 are now at the
point in the loop where WF enters the engine. Figure 2.13 is a more detailed
schematic that compares with Figure 2,12, The LQR system, with the observer,
is shown in Figure 2.14, where shaft torque has been substituted for QMR as
described in the previous section.

The transformed gains, L H, are calculated as follows:

L 1l =[a 8] C6] (2.7)
=8 o =

where L H are the transformed gains, G are the original gains [Gy Gpl, and
A, 8B, anH.g are the system matrices defined by Equations 2.2 and do not
TncTude the integral state.

2.1.11 LR Perturbational Controller

The LQR power turbine governor, 1ike the current T700 governor, is designed as
a perturbational controller and the design is strictly only valid for small
deviations from the steady-state design point. This means that stability or
good performance is not guaranteed if the engine operates at some condition
that was not analyzed. A standard design procedure is to analyze the system
at several representative operating points and do time simulations to exercise
the system with large deviations from steady state. Then, the engineer can
become confident that the system will be stable and perform adequately across
the engine envelope.

The LQR governor controls NP based on the deviations of the states from their
steady-state values. When a new load demand is made and a transient is
initiated, the steady-state values from which the deviations are computed are
the values at the demanded steady state. These are the variables labeled as
references (REF) in Figure 2.13. The steady-state references are scheduled as
a function of the load demand spindle (LDS) and approximate steady state
values of a standard engine as a function of the load on the engine. The load
demand spindle is a signal that is proportional to collective pitch angle and
is an indication of pilot load demand through the collective pitch. The LDS
is used as a feed-forward compensation in the baseline T700 Control System
(Ref. 8) to reduce power turbine speed droop. Transients that used the LDS
are referred to as compensated transients. Wind gusts or maneuvers that are
not initiated by changing the collective pitch angle are referred to as
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uncompensated since the load demand spindle remains constant as does the
collective pitch angle. In this case, the steady-state references remain at
the original steady-state value.

2.1.12 Calculating LQR Gains

To calculate the LQR gain matrix, G, the engineer can vary the state weighting
matrix, Q, and the control weighting matrix, R, in the cost functional of
Equation 2.3. The matrix, Q, changes the shape of the Bode plot in the
frequency domain, and if R Ts chosen as the diagonal matrix:

R=P1 (2.8)

with Pa scalar and I the identity matrix, then P has the effect of moving the
magnitude of the Bode plot up and down 1ike a gain. Generally, choosing Q
and P is an iterative procedure.

The state weighting matrix, Q, was chosen to be unity weight on the helicopter
main rotor velocity, NMR, and on fuel flow, WF. This is given in matrix form
as:

diag{ 0 0 1 0 11 (2.9)

where "diag" means a square matrix with the elements in the brackets along the
diagonal, and zeros everywhere else. Recall that the state matrix, x, is:

x=[NG NP NR Q®R W 1T (2.10)

as described in Section 2.1.9. For each model at the six power levels, P was
varied to give a crossover of about 10 rad/sec. A crossover of 10 rad/sec was
chosen to give a fast governor response without exciting the helicopter main
rotor resonance at about 18 rad/sec. Also, the engine dynamics are not very
well known above about 10 rad/sec. A different set of gains was calculated
for each power level for a total of six sets of gains. Each set of gains, G,
was then transformed to the set of gains, L H, as described in

Section 2.1.10. The design model and the Gains L H are included in

Appendix II for each power level.

It is desirable to simplify the control logic by having a constant set of LQR
gains independent of power level. The set of gains having elements with the
Towest magnitudes was chosen, and the frequency response of the six engine
models was calculated with this constant set of gains. The results are
discussed in Section 2.3.3. The lowest magnitude gains were computed for the
system model at 95% NG and are given as:
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L H = [0.0726, 0.25, 0.94, -0.67, 4.3] (2.11)
These gains correspond to the state vector:
x'=[ NG NP NWR QMR NPT (2.12)

where x' is the transformed state vector (Section 2.1.10), and JNP is the
integral of the NP error. The NP error is defined as the NP reference minus
the measured NP.

2.1.13 Use of Continuous versus Discrete LOR Gains

The sampling and zero-order hold process in a process controlled by a digital
computer introduces phase lag not introduced by a continuous or analog
controller. The system design can be done with an equivalent discrete model
that includes the effects of sampling and the zero-order hold. The LQR gains
can then be calculated using the discrete model. The dynamic behavior of the
sampled system with the discrete - model LQR gains should be a close
approximation to the analog - controlled system with analog - model LQR
gains. As the sampling period approaches zero, the discrete gains approach
the continuous gains in magnitude,

In order to evaluate this effect, the LQR gains were calculated at the 90% NG
power setting using a discrete - model equivalent to the continuous engine -
rotor model. The continuous state weighting and control weighting matrices
were converted to equivalent discrete weighting matrices. The LOR gains were
also calculated for the continuous system. The continuous and equivalent
discrete gains are given below:

Continuous gains: (2.13)
{0.0783 0.1123 0.0037 0.7261 9.0050]

Discrete gains: (2.14)
[0.0753 0.1067 0.0025 0.6926 8.8078]

The gains correspond to the untransformed states:
x=[Ne NP NMR QMR WFIT (2.10)

The continuous values vary by less than 5% for all gains except the gain or
NMR. CFor a sampled system, a small change in the value of coefficients can
have a big effect on the location of the system poles, but frequency response
analysis showed adequate stability margins. The continuous gains were used
because the transformation described in Section 2.1.10 could not be adapted
for use with the discrete - equivalent model.
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2.2 Observer (Kalman Filter)

2.2.1 Introduction

An observer is a closed loop system that contains a model of all or part of
the system and estimates system states when driven by known inputs and measure-
ments. A schematic of an observer is shown in Figure 2.15. The observer
system must meet the usual requirements of stability and performance with the
added requirement that it calculate the estimated states of interest fast
enough so that the performance of the main loop is not affected. If the model
of the system used in the observer is observable, all of its poles can be
placed arbitrarily in the s-place, with the restriction that complex poles be
placed as complex conjugate pairs. Main rotor blade velocity is observable in
the T700 system from power turbine speed. More discussion on observability
can be found in Ref. 9. The Kalman Filter algorithm places the system poles
in a specific manner.

2.2.2 Rotor Model for Observer

The rotor model used for the observer is the simplified model of Figure 2.4
that neglects the tail-rotor dynamics. The power turbine inertia is not
lumped as part of the transmission as is done for the complete engine and
rotor system. The rotor model was put into state-space form given generically
as:

Xa(t) = AR Xp(t) + Bp up(t) (2.15a)
YR(t) = CR XR(t) (2.15b)

where %R(t) is the rotor state vector, up(t) 1s the input to the rotor,
Yr is the output vector, and Ap aR and Cp, are the system
coefficient matrices. Model va1i ity around a steady-state value is implied.

The states for this system are main rotor angular velocity, NMR. a main rotor
torque state, QMR and transmission speed, NP. The transmission speed is
approximated as power turbine speed, NP, because for this simple model, the

coupling between the power turbine and transmission is assumed rigid. The
caret (~) above the state variables indicates that these are estimated states

from the observer rather than measured states. The 1input, g$(t), to this ,
system is engine shaft torque, Q shaft. The output vector,™Y consists of NP

and QMR. An assumption was made that Q shaft was a good approximation to
MR. This is discussed more in Section 2.3.2.1.
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The Kalman Filter of the helicopter rotor system was designed using an equiva- -
lent discrete model of the system given by Equations 2.15. The discrete model
is a set of first order difference equations that approximates the behavior of
the continuous model driven by a zero order hold input. In reality, the rotor
is driven by the continuous torque from the engine, so the zero-order hold
assumption is a further approximation. This assumption only affects the
system Bp matrix, however, which does not enter into the Kalman Filter gain
calculations and should not have a major impact on system performance.

The generic form of the system difference equations is:

X(1 + 1) = AgX (i) + By u(i) (2.16a)
Y(i) = CgX(i) (2.16b)

where i is the time step at which measurements are sampled and control action
is possible on the plant. Here it is assumed that the measurements and control
action occur at the same time, and there is a full-interval processing delay
from the time the measurements are taken to the time the new control action is
taken. More discussion on the sequencing of events in the control is included
in Section 2.5. The transformations from the continuous system matrices to
the discrete system matrices are:

Ag = o [t(i +1), t(i)] (2.17a)

B4 = téi;]) o [t(i +1),7] BpdT (2.17b)
t(i

Cq = Cr (2.17¢)

where ® is the state transition matrix, the solution to the unforced matrix
differential equation of Equation 2.15a. Equations 2.17 are simplified based
on the assumptions of constant input, u, over the interval between time steps
and full-interval processing delay from Y(i) to u(i + 1). The continuous
simplified state-space description of the rotor system in terms of system
variables is given in Equation 2.18. The variables are defined in

Figure 2.4. The numerical values of the variables in included in Appendix II.
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- 2 ] Q Shaft
JT
+ 0 (2.18)
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. : I -

2.2.3 Kalman Filter Formulation

The Kalman Filter formulation assumes the system of Equations 2.16 is
corrupted by process noise and measurement noise as defined below:

X(i + 1) = Ag X(1) + 34 u(i) + Wy (i) (2.19)
T Y(§) = Cg XTi) + Wa(H) - (2.19b)

where Wy(1) is the discrete process noise and Wp(i) is the discrete

-

measureément noise. Wy(i) and Wo(i) have zero-mean, are uncorrelated, and
have variance matrices Vj and Vo, respectively.

The Kalman Filter places the closed-l1oop poles of the system to minimize the
variance of the reconstruction error defined as:

E{C(X(1) - X()] [X(1) - X(D)IT} (2.20)

where X(i) is the actual state value at sample i, and 2(1) is the estimated
state value at sample i.

This variance is minimized for the variances of the process and measurement
noises chosen, V1 and V2, respectively.
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For a system that is asymptotically stable, the gains, K, reach a constant
value as the time step 1 — oo, The discrete gains are computed from:

K = Ad P C] (V2 + Cq P C))-! (2.21)
when P is calculated from:
P=(Ad-KCyPAL+ W (2.22)

The Vy and Vo matrices were treated as design variables to get good time
and Trequency domain results.

2.2.4 Kalman Filter Design Summary

This section summarizes the procedure used for designing the Kalman Filter
used in the LQR power turbine governor. The first step was to formulate a
continuous model of the rotor system. This model was then transformed to an
equivalent discrete model using the transformations of Equations 2.17. The
modeling steps are described in Section 2.2.2. A schematic of the rotor
Kalman Filter is shown in Figure 2.16. Engine shaft torque, Q shaft, enters
the system through the B4 matrix and also as a measured state. Using Q
shaft as a measured state is an approximation to the actual main rotor state,
QMR. Power turbine speed, NP, is also a measured state for this system.

The next task was to calculate the Kalman Filter gains, K, by choosing

suitable noise intensity matrices, Vy and Vp, and solving Equations 2.21
and 2.22. For a given set of gains, K, th® Kalman Filter was analyzed as a

separate system to determine if it met stability and performance criteria.
Details of choosing the noise intensity matrices and analyzing the Kalman
Filter are given in the following sections. The Kalman Filter was then
included in the LQR power turbine governor, and the entire system was
analyzed. This discussion begins with Section 2.3.

2.2.5 Calculating Kalman Filter Gains

2.2.5.1 Choosing Noise Intensity Matrices

The process noise intensity matrix, Vy, and the measurement noise intensity
matrix, Vo, determine the Kalman Filter gains, K, for a given plant. These
gains déf%rmine the shape of the Bode curves in the frequency domain, and thus

the time response of the system. If V is chosen as:

Vo=al (2.23)
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where o is a scalar and I is the identity matrix, then changing a has the
effect of moving the magnitude Bode curves up and down 1ike a gain while Vy
changes the shape of the curve. Increasing the magnitude of Vy or -
decreasing the magnitude of Vp causes the Kalman Filter gains to increase in
magnitude, This increases the filter bandwidth and indicates that the filter
is relying more heavily on actual measurements to estimate the states and
doing less filtering of the data, More discussion on this can be found in
Ref. 10,

The Vy and Vo matrices were chosen without regard to actual noise
representations, but rather to achieve good time and frequency domain
results. Generally, choosing Vy and V2 is an iterative procedure. The
matrix, Vi, was chosen as:

Vi =Bg4 B} (2.24)

where 84 is the plant matrix from Equation 2.17b and g} is the
transpose of B4. The final value of o was chosen as:

a= §6 (2.25)
The gain matrix, K, was calculated as:
0.31 0.022
K = 0.013 0.0034 (2.25)
- 0.072 0,018

2.2.6 Analysis of Kalman Filter - Time Domain

The time response of the Kalman Filter alone was used initially as a
qualitative measure of a set of Kalman Filter gains, K. The continuous rotor
model of Figure 2.5, including the tail rotor dynamicS was used to represent
the "real" plant. The estimated states of the Kalman Filter were

compared to the states of this real plant. Time simulations were done to check
the convergence of the estimated states to the actual, or real states. The
simulations included starting the estimated states at some nonzero initial
conditions with the actual states at zero initial conditions, starting the
actual states at nonzero initial conditions with the estimated states at zero,

and starting both the actual and estimated states at zero initial conditions
and stepping the shaft torque input from zero to a positive value.

Figure 2.17 shows . the responses of the actual states, X, and the recon-
structed states, X, when each estimated state is given an initial condition of
50 RPM for NP and NMR, and 50 ft-l1bs torque for QWR. Figure 2.18 shows the
responses of the actual states, X, and the estimated states, X, when each
actual state is given an initial condition of 50 (same units as above). The
torque state for the real plant is QKMR which is the torque stored in the
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centrifugal spring only. Figure 2.19 shows the responses of the actual and
estimated states, all with zero initial conditions, to a step in engine shaft
torque, 7 shaft. The zero-order-hold output of the Kalman Filter is evident
in these figures. Figures 2.17 and 2.18 show that the estimated states
converge to the actual states in about 1 sec. This agrees very well with the
position of the closed-loop Kalman Tilter poles. The poles are located in the
z-plane on the real axis at:

0.333
z = | 0.9137 (2.27)
0.9453
This corresponds to s-plane pole positions
-108.5
s = -9.0 (2.23)
-5.6
using the transformation of poles from s-plane to z-plane:
z = eST (2.2%a)
s = 1 (In 2) (2.29b)
T‘

where T is the sampling period, z is the pole position in the z-plane and s is
the pole position in the s-plane. The slowest pole is at -5.6 rad/sec and
corresponds to a time constant of

T = 0,18 sec (2.30)

Assuming convergence in 5 7, this corresponds to convergence in 0.9 sec, which
is close to the 1 sec seen in the simulations.

Tigure 2.17 shows the case where the estimated states were started with
nonzero initial conditions and shows that there is no oscillation during the
convergence as is expected from all real poles. The response of states to
nonzero initial conditions on actual states, Figure 2.18, is oscillatory, but
that is because the Kalman Filter does not converge to the actual states until
1 sec, and in the meantime, the actual states are oscillating. This same
effect is seen in Figure 2.19.
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The criteria for acceptance of the Kalman Filter (KF) design based on these
time simulations were qualitative. Excessive oscillations of the NMR
estimated state for nonzero initial conditions of the actual states was
undesirable. This condition was imposed because NMR directly affects fuel
flow in the LQR power turbine governor, and oscillations would feed directly
to the engine. [This situation would only occur during initialization of the
control when the initial conditions of the Kalman Filter are different than
the actual engine and helicopter parameter initial conditions. Therefore,
this restriction placed on the Kalman Filter may not be necessary.)

2.2.7 Analysis of Kalman Filter - Frequency Domain

The Kalman Filter (KF) as a separate system was also analyzed in the frequency
domain. Under the restriction of a continuous system, the KF has the

same stability margin properties as the LQR as mentioned in Section 2.1.8.
However, for a sampled system, as the rotor was modeled, these stability
margins do not hold. Standard Bode analysis cannot be used with the usual
confidence because this KF is not a single-input-single-output (SISO) system.
Singular value techniques that have been developed for analyzing the absolute
stability of multi-input-multi-output (MIMO) systems (Ref. 15) have not been
developed for discrete systems. A standard method of analyzing a multiloop
system in the frequency domain is to open one loop at a time while maintaining
the other loops closed. This may give misleading results as is illustrated by
an example in Ref. 15.

Despite these problems, frequency domain analysis can be useful if the results
are used correctly. The KF was initially designed as a SISO 1oop with NP as
the only measured state. This system was then used as a basis for comparison
for the MIMO KF having NP and torque as measure states. The torque
measurement was added to take advantage of available measurements of the
engine parameters. The KF algorithm for calculating gains yields a system
with good stability margins. As long as the gains and, therefore, the
bandwidth are not driven too high, the phase Tag introduced by sampling does
not have a significant effect on stability. The gains on the NP error for the
Kalman Filter with two measured states were the dominant gains, so the gains
of the KF using only the NP error were used as a gauge for choosing the
magnitude of the multi-input KF gains. Frequency response analysis was done
to determine the stability margins of the system.

The SISO KF is shown schematically in Figure 2.20. This system can be
analyzed using Bode techniques as applied to digital systems (Ref. 9). The
gains, K, were calculated for the SISO KF using Vy = B BE and

Vo = a”1 with @ = 3.0. The B4 matrix, and the Aq matrix are the same

?%r the SISO case and the MIMD case. The frequency response analysis was done
for a power turbine speed, NP, input and an estimated speed, NP, output.
Figure 2.21 shows a Bode plot and Figure 2.22 shows a Nyquist plot. From
these figures it can be seen that the KF is stable with 7.7dB gain margin and
71.6° phase margin. The Bode plot in Figure 2.21 shows amplification at
around 40 rad/sec.
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Nyquist Diagram of SISO Kalman Filter with Loop Broken at

Estimated Np Ref erence.

Figure 2.22



This peak does not affect stability as is shown by the Nyquist plot of

- Figure 2.22 since the amplification occurs 180° away from the -1 point, which

is the critical point for stability analysis. There is no danger of losing
stability margin in the KF since the values of the KF coefficients will not
change. This system allows +180° uncertainty in sampling effects. [There is
a different risk of instability, however, if the model used by the KF does not
accurately depict the rotor dynamics. In this case, the KF may not accurately
calculate the estimated NMR.] There are no significant NP dynamics in the
region of this high frequency peak, so a 20 rad/sec prefilter lag was added to
the input of the KF where the NP measurement enters to attenuate any high
frequency noise. The resulting Bode plot of the system from measured NP to
estimated power turbine speed, NP, is shown in Figure 2.23.

2.3 Analysis of LQR - Frequency Domain

The LQR NP governor was analyzed in the frequency domain using standard Bode
plot techniques to determine the system stability margins, speed of response,
and disturbance-rejection characteristics. These techniques are valid since
the final LQR design is single input (WF) and single output (NP). The primary
stability analysis was done with the Toop broken at the WF input to the
engine. A sinusoidal WF was input to the engine model and the resulting WF
feedback was measured. This is shown schematically in Figure 2.24. This
point in the loop is important because WF is the main driver of the engine,
and also it is affected by all the engine states by the definition of
full-state feedback. WF is also affected by the Kalman Fiiter. The turbine
governor is a regulator that functions to reject disturbances to the power
turbine. The controller reacts to these disturbances through WF when the
disturbances appear in power turbine speed or shaft torque. The greater the
magnitude of WF in the frequency domain, the more disturbances are rejected.
The magnitude of the open-loop transfer function at this point should be as
large as possible over the frequency range where the disturbances occur. The
crossover of the magnitude on a Bode plot should not exceed about 10 rad/sec,
however, so that WF does not excite the helicopter main rotor resonance at
about 18 rad/sec.

The system frequency response was calculated for sinusoidal inputs at the gas

generator speed (NG), shaft torque, and power turbine speed (NP) sensors to
determine the noise rejection characteristics of the system. The disturbance

rejection characteristics of the system were analyzed by putting a sinusoidal
torque disturbance input to the closed-loop system through the helicopter main
and tail rotors.

Except where noted otherwise, the frequency response plots are for the engine
at a power level of 90% NG and the LQR gains calculated for 95% NG. As
described in Section 2.3.3, the LQR gains were maintained constant at the
value of the gains calculated at 95% NG. The 90% NG power setting with these
LQR gains often gave the lowest stability margin of the system, so this point
was used for comparison.
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2.3.1 Design Model with Controller

Using the simplified model of Figure 2.7, the LQR gains were calculated as
described in Section 2.1.12. The frequency response of this system with the
LOR gains is shown in Figure 2.25. This frequency response is for the
open-loop system with the integrator appended to WF, no tail rotor dynamics,
and the LQR gains before they are transformed for the integrator on NP error.
The sinusoidal input to this system is at the input to the WF integrator.

This point in the loop is where the desirable LQR properties are quaranteed.
The engine is at the 95% power level. These same untransformed gains were
used with the more accurate helicopter rotor model of Figure 2.3. This system
also has the integrator appended to WF, and the sinusoidal input goes into the
integrator. The frequency response is shown in Figure 2.26. The responses of
the two systems are very similar even though the tail rotor dynamics are
included in the more detailed model.

The LQR gains were transformed as described in Section 2.1.10, and the system
was changed so that the integrator operated on the NP error, which is the
difference between the NP reference and the measured NP, This frequency
response is shown in Figure 2.27. This is the open-loop response with the
sinusoidal input being WF to the engine. The transformation is such that the
guaranteed LQR properties are now at this point in the system loop. This is a
physically meaningful point in the system, while the untransformed system
gquarantees the LQR properties at a point inside the controller.

2.3.2 Deviations from the Design Model

The four state design model of Figure 2.2 is the simplest model that was
judged acceptable for the LQR design. The model that was used for further
analysis of the design in the frequency domain was more complex and included
several known deviations from the design model. The changes and additions to
the simple model are explained below. Refer to Section 2.7 for their effect
on rotor droop.

2.3.2.1 Shaft Torque

The two helicopter rotor states used in the three state model of Figure 2.4
were main rotor blade velocity, NMR, and a torque state, QMR, which is the sum
of the torque in the 1ag-hinge damper and the centrifugal spring. Neither of
these states is measured. The main rotor speed, NMR, was estimated using a
Kg]man Filter observer. This is discussed fully in the section on the
observer,
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Figure 2.25 Bode Plot of LQR Np Governor with Integrator Appended to WF.
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The torque state was approximated by engine shaft torque. This had a
noticeable effect on the frequency response as can be seen in Figures 2.27 and
2.28. Figure 2.27 is the frequency response of the system having QMR as a
state, and Figure 2.28 is the response of the system that has engine shaft
torque as an approximation to QMR. The substitution of shaft torque for QMR
has a lead effect on the system. This is not a desirable effect in this case
because it raises the tail-rotor resonant peak and flattens the response at
the crossover. A drop in gain is needed to attenuate the tail-rotor peak to
-6dB, and this attenuation lowers the system bandwidth and speed of response.
The main rotor torque estimated in the Kalman Filter was tried in place of the
actual main rotor torque, QMR. This frequency response is shown in

Figure 2.29. This response is worse than the response that uses engine shaft
torque. A possible reason for this is that the estimate of QMR is not
accurate enough. This can be due to many things including using shaft torque
as an approximation to QMR in the observer, estimating QMR too slowly, and not
having a sufficiently accurate model of the rotor system. The final system
uses engine shaft torque.

2.3.2.2 Anti-Alais Filters

This LQR power turbine governor was designed for implementation in a digital
control. Anti-alias (analog) filters are used where gas generator speed, NG,
power turbine speed, NP, and shaft torque, Q shaft, are sampled by the
control. These filters are two single poles at 100 rad/sec. This provides at
least 20dB attenuation at 314 rad/sec, which is half the sampling frequency of
628 rad/sec (0.01 sec sampling period). This amount of attenuation has been
used successfully in General Electric digital controls. These filters
contribute about 10 degrees phase lag at 10 rad/sec.

2.3.2.3 Zero-Order-Hold Model

The digital WF signal from the control passes through a zero-order hold (ZOH)
digital-to-analog (D/A) converter and then to the engine. The frequency
response model used for the zero-order-hold is: ‘

Ho (s) = }. (1-exp(-sT)) (2.31)
S

where Hy (s) is the transfer function of the ZOH, T is the sampling period
in sec, and s is the Laplace operator. The frequency response of this model

js shown in Figure 2.30. The model is equivalent to a delay of half the
update time. The ZOH model contributes 3 degrees of phase lag at 10 rad/sec
with unity gain. :
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2.3.2.4 Hydromechanical Fuel Control

The Hydromechanical Fuel Control (HMU) was modeled as a first order lag with a
break frequency of 56 rad/sec. This model was based on test data of the HMU
done by the manufacturer of the HMU. A sample frequency response of the
hardware test is shown in Figure 2.31. This HMU differs from the standard
T700 HMU because it is modified to allow WF and the compressor variable
geometry (VG) to be manipulated directly by an outside signal. This allows
the control laws to be computed in a digital computer and direct the normally
hydromechanical WF and VG.

2.3.2.5 Heat Soak Model

Transient simulations of the engine with the LQR controller showed that the
system was stable as predicted for simulations without the heat soak model,
but unstable when the heat soak model was included. The heat soak model
accounts for the effects of heat absorption by the engine metal mass during
bursts and chops. Analysis of the heat soak model revealed that it
contributed 25 degrees of phase lag and 4.5 dB attenuation at 4 rad/sec. This
lag combined with other lags unaccounted for in the design model was
sufficient to drive the system unstable. Comparison of the frequency domain
effects of this heat soak model with the effects of other similar models
indicates that this phase lag is excessive. Until further evidence proves
this result, a lead compensator was added to the WF output of the LQR
controller to restore sufficient stability margins. This lead had a minimal
effect on performance when the heat soak model was not included in the
transient simulations. The lead contributed 60° phase angle at 0.5 rad/sec.

2.3.2.6 Helicopter Rotor System

The detailed helicopter rotor system of Figure 2.3 was used for analysis in
the frequency domain. For time domain analysis, the simpler model shown in
Figure 2.1 was used. This model retains any dynamics that are significant for
time simulations. The dynamics that were retained were those that had an
effect on the frequency response of the system up to the tail rotor resonant
frequency. The different rotor models are described in Section 2.3.9.

2.3.3 Effect of Constant LQR Gains

It is desirable to maintain the LOR gains constant with power level to
simplify the control logic. The effect of constant gains on stability was
analyzed in the frequency domain. The frequency response was calculated at
the six power levels using the LQR gains computed for the 95% NG power level.
This set of gains had the Towest magnitude of the gains computed at the six
power levels. Each set of gains was calculated to give a crossover of about
10 rad/sec at each power level, so the lowest magnitude gains were chosen to
not exceed this design criterion at any power level. The frequency response
shows that sufficient stability margins were maintained. Time simulations
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reported in Section 2.7 show that acceptable time results were achieved. The
gain and phase margins are compiled in Table 2.1, and the frequency responses
are shown in Figures 2.32a-f. These frequency responses contain the lead
compensation described previously. The gain of the final system was decreased
1 db to attenuate the tail rotor resonance a minimum of 6 db.

2.3.4 Effect of Variation of Helicopter Rotor Parameters

2.3.4.1 Centrifugal Spring Constant

The helicopter main-rotor centrifugal spring constant can be considered
proportional to main rotor speed squared as described in Section 2.1.2. For
steady state operation, this variable was considered a constant because rotor
speed is governed at 100% speed. During a transient, however, the rotor speed
will vary from 100%, and the centrifugal spring constant will also vary. To
assure that stability margins are maintained at extreme variations from 100%,
the spring constant was varied up and down corresponding to a + 10% change in
helicopter rotor speed. The spring constant is proportional to speed squared,
so the constant was increased 21% and decreased 19%. The frequency response
results are shown for increased and decreased spring constant in Figures 2.33
and 2.34, respectively. Figure 2.33 shows that increasing the spring constant
raises the tail rotor resonant peak compared to the nominal system. The
system remains stable under both conditions. The gain and phase margins are
included in Table 2.1.

2.3.4.2 Aerodynamic Damping

Aerodynamic damping of the main and tail rotors was not varied with helicopter
rotor speed.
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Table 2.1 Compilation of Frequency Response Results

Tail Rotor
Power Level Phase Margin Gain Margin Attenuation
(% NG) (degrees) (dB) (dB)
Standard LR System
100% 87° 13.4 dB 5.8 d8
97.2% 85.6° 13.3 d8 5.5 d8
95% 33° 13.0 dB 5.4 dB
90% 79° 10.0 d8 6.5 d8
33% 85.6° 15.1 d8 6.3 d8
73.7% 90.2° 16.5 d8 7.5 dB
centrifugal Spring Constant Variation
+21% KCM: 90% 68.2° 10.0 dB 6.0 dB
-19% KCM: 90% 55.4° 9.9 dB 5.9 dB
One FEngine Inoperative (OEI)

90% 79.6° 11.3 d8 11.9 @8
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2.3.4.3 Helicopter Main Rotor Lag-Hinge Damping

The frequency response of the system with zero lag-hinge damping was

computed. The Bode plot is shown in Figure 2.35 and shows the system will not
be stable for zero lag-hinge damping. It is possible that a system can be
designed that will be stable with no lag-hinge damping and will operate well
with nominal damping.

2.3.5 Effect of One-Engine Inoperative (OEI)

The frequency response of the LQR Np governor was calculated with only one
engine driving the helicopter rotor system. This simulates the loss of one
engine. This response is shown in Figure 2,.38. Stability was not adversely
affected. These gain and phase margins are included in Table 2.1.

2.3.6 Frequency Response Comparison with T700 Baseline

2.3.6.1 Open-Loop System at WF Input

The system loop was broken at the WF input to the engine as shown in

Figure 2.24 and described in Section 2.3. The frequency response of the LQR
NP governor is shown in Figure 2.32d, and the response of the baseline T700
governor is shown in Figure 2.36. The figures show that the LQR NP governor
has 79° phase margin and 10.0 dB gain margin compared to the baseline T700
governor with 51° phase margin and 5.7 dB gain margin. The crossover of the
T700 baseline governor is only 2.7 rad/sec compared to about 6 rad/sec for the
LQR NP governor.

2.3.6.2 Open-Loop System at Np Feedback

The system loop was broken at the power turbine speed feedback to the error
junction as shown in Figure 2.39. The sinusoidal input to this system was the
NP reference. Only the NP reference was oscillated. The NP signal from the
engine to the LQR control was not oscillated directly. This frequency
response was calculated for comparison with the baseline T700 Control System.
This frequency response is not as meaningful as the disturbance rejection
responses that follow, however, because the power turbine governor is not a
reference following system, but a disturbance rejection system. Figure 2.40
shows the LQR governor response to a sinusoidal NP reference, and Figure 2.41
show: the baseline T700 response. Both systems have sufficient stability
margins.

2.3.6.3 Disturbance Rejection

The power turbine governor is a regulator that maintains power turbine speed
constant in the presence of disturbances. The primary sources of disturbances
are the helicopter main and tail rotors. The frequency response of the
closed-loop LQR and T700 baseline systems was calculated for a main rotor
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torque disturbance and a tail rotor torque disturbance to analyze the effects
on power turbine speed and helicopter main rotor speed. The simulated
disturbance was a sinewave frequency sweep. The parts in the rotor system
where the disturbances were input are shown in Figure 2.42. Each disturbance
was input separately. The response of power turbine speed to a main rotor
disturbance is shown in Figure 2.43 for the LQR governor and in Figure 2.44
for the T700 baseline governor. The response of helicopter main rotor speed
to a main rotor torque disturbance is shown in Figure 2.45 for the LQR
governor and in Figure 2.46 for the 7700 baseline governor.

The closed-loop response of power turbine speed to tail rotor torque
disturbances for the LQR governor is shown in Figure 2.47 and for the T700
baseline governor in Figure 2.48. The figures show that disturbances are
rejected better by the LQR NP governor than by the T700 baseline governor.
This better attenuation of disturbances is seen in the time responses, also.

2.3.7 Sensor Noise Rejection

Analysis was done in the frequency domain on the effect of sensor noise on the
WF input to the engine and on power turbine speed. The three sensors measure
gas generator speed, NG, power turbine speed, NP and engine shaft torque,

Q shaft. For each sensor separately, a sinusoidal signal was superimposed on
the sensor just before the antialias filters with the system operating closed
loop. The disturbance rejection characteristics of WF and power turbine speed
was assessed in the frequency domain by looking at the magnitude of the Bode
plots of WF and power turbine speed. The response of power turbine speed to
the NP sensor excitation is shown in Figure 2.49. This figure shows that
noise on the NP sensor above the tail rotor resonance frequency will be
attenuated. Figure 2.50 shows the response of WF to NP sensor noise. Noise
is attenuated at all frequencies. The effects of NG sensor noise on NP and WF
are shown in Figures 2.51 and 2.52, respectively. Noise is attenuated in both
instances. Engine torque sensor noise effect on NP and WF are shown in
Figures 2.53 and 2.54, respectively. The effect of noise on NP is attenuated
except at the main rotor and tail rotor frequencies, and the effect of noise
on WF is attenuated except at the main rotor frequency. This is not
unexpected since the torque sensor measures main and tail rotor torque to the
engine. The sensor should not see noise in this region, but rather a real
signal. The figures show the LQR governor is insensitive to sensor noise.

2.3.8 Other Helicopter Rotor Systems

The LQR power turbine governor and observer that were designed for use on the
8lack Hawk were analyzed without changes with a Westland WG30 and a Hughes
articulated rotor systems. The frequency response of the Black Hawk,
Westland, and Hughes rotor systems were calculated for an input to WF
integrator (see Figure 2.7) and an output of NP. This was done to compare the
rotor system frequency domain characteristics. Figure 2.556 shows the Black
Hawk response, Figure 2.56 shows the Westland, WG30 response, and Figure 2,57
shows the Hughes response. Each system exhibits a resonant peak at the main
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w rad/sec

Bode Plot of Westland WG30 Rotor System Frequency Response from

d(WF)/dt Input to Np Output.
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rotor natural frequency and a resonant peak at the tail rotor natural
frequency. The Black Hawk and Hughes systems have the peaks in the same
frequency range, except the Hughes main rotor peak is less damped and,
therefore, more pronounced. The Westland system has the main rotor resonance
at a higher frequency compared to the Hughes and Black Hawk systems.

The B8lack Hawk LQR gains and Kalman Filter were used with the Westland WG30
and Hughes rotor systems. The frequency response of the Westland system with
the Black Hawk power turbine governor is shown in Figure 2.58. The excitation
is WF to the engine and the response is demanded WF as shown in Figure 2.24,
The antiresonance before the first resonant peak was reduced considerably, but
the phase margin is reduced to near zero degrees. The effect of adding a lead
compensator to increase phase margin is shown in Figure 2.59. The lead
compensator has the undesirable effect of increasing the resonant peaks.
Lowering the gain to get 6dB attenuation of the peaks lowers the bandwidth to
around 3 rad/sec, reducing the effectiveness of the power turbine governor.
The frequency response of the 3lack Hawk power turbine governor with the
Hughes rotor system is shown in Figure 2.60. The excitation is WF to the
engine and the response is demanded WF as shown in Figure 2.24. The main
rotor resonant peak is not reduced as much as was the Black Hawk resonant
peak. A gain reduction to attenuate the resonant peaks would reduce the
bandwidth too much for the governor to be more effective than the T700
baseline governor. It is possible that different LQR governors could be
designed for each rotor system and then a compromise made to make the control
transferable among different rotor systems.

2.4 Dynamometer Design

The LQR power turbine governor designed for the Black Hawk rotor system was
also evaluated in the frequency and time domains using a dynamometer load for
test cell operation. The goal was to be able to transfer the engine between
the airframe and the test cell with no modification to the control laws. This
has not been achieved, although only the coefficients of a 1ead compensator
need to be changed.

The LQR power turbine governor designed for the Black Hawk rotor system was
evaluated in the frequency domain with a dynamometer l1oad. This response is
shown in Figure 2.61 for the engine at 90% Ng. The model used for the
dynamometer is shown in Figure 2.62. The frequency response shows no resonant
peaks since the dynamometer does not contain the same dynamic characteristics
of a helicopter rotor system. The phase margin was reduced to about 12
degrees and is insufficient to maintain stability on a real engine. Lead
compensation was added at 5 rad/sec to increase the phase margin to 56 degrees
with 6 dB gain margin. Figure 2.63 is a Bode plot of the LQR governor with
the dynamometer 1oad with the lead compensator added. This lead compensator
has its peak phase contribution one decade above the peak phase lead of the
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Figure 2.62 Simp1if ied Dynamometer Model.
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Black Hawk compensator at 0.5 rad/sec. The lead compensator for the Black
Hawk helicopter rotor system was primarily added to counteract the effect of
the heat soak model in the T700 nonlinear DISCUS model. As described in
Section 2.3.2.5 the lag contributed by the heat soak model may be excessive.
If this is true, it may be possible to use one lead compensator for both the
8lack Hawk system and the dynamometer system.

2.4.1 Results of Dynamometer Simulations

The LQR power turbine governor was analyzed in the time domain using the GE
nonlinear DISCUS model of the T700 engine with the dynamometer model. Four
collective-pitch-angle transients were simulated for comparison of the LQR
governor with the baseline T700 governor. Two of the transients were
compensated with the l1oad demand spindle (LDS) as described in Section 2.1.11,
and two of the transients were not compensated with LDS.

The 1oad on the engine with the uncompensated controller was changed with
collective pitch angle, but the LDS was maintained constant at the starting
level. This causes the load on the engine to change with no feed-forward
information going to the control. The two compensated transients were an
acceleration caused by a 0%-70% collective pitch angle burst in 0.5 sec and a
deceleration caused by a 70%-0% collective pitch chop in 0.5 sec. This is a
change of about 700 shaft horsepower.

The uncompensated transients were an acceleration caused by a 40%-70%
collective pitch angle burst in 0.1 sec and a deceleration caused by a 70%-40%
collective pitch angle chop in 0.1 sec. This is a 488 shaft horsepower
change. A1l transients were done with and without the model of the heat sink,
since the accuracy of the model is in question. The system was designed,
however, as though the heat sink model were accurate because this is the safer

approach,

Figures 2.54 and 2.65 show the 0%-70% collective pitch burst compensated with
LDS for the LQR and T700 baseline governors, respectively. These simulations
do not include the heat sink. Figures 2.66 and 2.67 show the same transient
with the heat sink for the LQR and T700 baseline, respectively. The 70%-0%
collective pitch chops compensated with LDS with no heat sink model are shown
in Figure 2.63 for the LQR and Figure 2.69 for the 7700 baseline. The same
chop with a heat sink model is shown in Figure 2.70 for the LQR and

Figure 2.71 for the T700 baseline.

Figures 2.72 and 2.73 show the 40%-70% collective pitch burst compensated with
LNS for the LQR and T700 baseline governors, respectively. These simulations
do not include the heat sink. Fiqures 2.74 and 2.75 show the same transient
with the heat sink for the LR and T700 baseline, respectively. The 70%-40%
collective pitch chops compensated with LDS with no heat sink model are shown
in Figure 2.76 for the LQR and Figure 2.77 for the T700 baseline. The same
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chop with a heat sink model is shown in Figure 2.78 for the LQR and
Figure 2.79 for the T700 baseline. Table 2.2 Summarizes the above results.

The performance of the LQR power turbine governor with the dynamometer is not
consistently better than the T700 baseline system with the dynamometer. This

is not unexpected since the governor was designed for use with a Black Hawk
rotor system and not for use with a dynamometer.

Table 2.2. Comparison of Droop and Overshoot of T700 Baseline
and LQR Np Governors with Dynamometer

Event Droop (-) or Overshoot (+)

T700 Baseline LQR

1. 40% - 70% beta*, uncompensated,** 0.1 sec
- with no heat sink -6.9% -4.73%
- with heat sink -8.21% -6.71%

2. 70% - 40% beta, uncompensated, 0.1 sec
- with no heat sink +5.66% +3.98%
- with heat sink . +7.34% +.01%

3. 0% - 70% beta, compensated**, 0.5 sec
- with no heat sink -5.51% -6.75%
- with heat sink -12.96% -13.82%

4, 70% - 0% beta, compensated, 0.5 sec
- with no heat sink +1.14%/-2.57% +4,24%
- with heat sink +12.93% +15.28%

* beta is collective pitch angle
** compensated or uncompensated with LDS
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2.5 Use of Variable Geometry and Fuel Flow to Control Np

The simultaneous use of compressor variable geometry, VG, and fuel flow, WF,
to control power turbine speed, NP, was researched to determine any
performance improvements over the use of WF alone to control NP. A block
diagram of this system is shown in Figure 2.1. This system is a multi-input-
multi-output (MIMO) system with WF and VG as inputs and NP and VG as outputs.
Because of the multiple inquts, standard Bode plot analysis is not strictly
valid although singular value techniques may be used. These techniques are
detailed in Ref. 15, and a brief synopsis of their use is given below.

2.5.1 Singular Values

For a MIMO system, each output is in general affected by every input, and
conversely each input generally affects every output. Only for a decoupled
system does one input affect one and only one output. Because of the
coupling, gain and phase margin criteria from Bode techniques cannot be used
for MIMO systems with the confidence of "guaranteed" stability that they- imply
for single-input-single-output (SISO) systems. Singular value techniques
combined with the LQR method provide the engineer with powerful design and
analysis tools for MIMO systems. This section discusses some of these methods.

Singular values will not be defined, but their properties and use will be
explained. Singular value plots are analogous to the magnitude plot of a
standard Bode plot. The magnitude curve of a Bode plot for a SISO system is
identical to the singular value plot of the system. The Bode magnitude plot
gives the amount of amplification or attenuation that an output exhibits for a
sinusoidal input at a given frequency. Singular value plots also show the
amplification and attenuation of the output for a given input, except now the
inputs and outputs are vectors. The input and output vectors have as elements
the individual inputs and outputs, respectively. This can be visualized for a
two-input, two-output system as shown in Figure 2.80. The vectors

directions Y and ¥ are defined by the ratio of the elements. For a MIMO
system, the input-output relationship is given by:

Y (s) = H (s) U (s)

where Y (s) is the Laplace transform of each element of the output vector,

U (s) Ts the Laplace transform of each element of the input vector, and (s)
Ts the plant transfer function matrix in s relating each output to each -
input. H (s) is a transformation or mapping of U (s) into Y (s), and the
maximum and minimum singular value curves quantify the maximum and minimum
amplification, respectively, of the input vector by the system described by

H (s). This is shown schematically in Figure 2.81. Direction of the vector
Ts not preserved in this transformation. For a S1SO system, there is only one
singular value curve versus frequency, and it is the same as the magnitude of
the Bode plot.
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For a system designed using the LQR method, 50° phase margin and -56dB, + oo
gain margin are guaranteed. The gain change or the phase change can occur in
each loop separately or all loops simultaneously and the system will remain
stable. There is no guarantee, however, if the gain and phase changes occur
simultaneously. This is consistent with single-input-single-output gain and
phase margin definitions. The singular value (magnitude) plot can be used to
design for performance since stability is "guaranteed." The desirable loop
shapes for singular value plots are similar to those for the Bode magnitude
plot: high loop gain at low frequencies for good command following, and
disturbance rejection at those frequencies, a sufficiently-high crossover
frequency for adequate speed of response, and sufficient attenuation at high
frequency for noise filtering. A crossover rate of about -20dB/decade is
guaranteed by the LQR method and is implied by the stability margins. The
only additional requirement when there are two magnitude curves on one plot is
that the minimum curve should be large where amplification is desirable, and
the maximum curve should be small where attenuation is desired. A typical
singular value plot is shown in Figure 2.82a.

A design using VG and WF as inputs and NP and VG as outputs showed that the
best performance by frequency response specifications occurred when the
minimum and maximum singular values converged to one. This plot is shown in
Figure 2.82b. [This is not the same as a SISO system that only have one
singular value curve. The above system has two curves that are equal.] Since
the two curves are the same, the amplification is the same for any ratio of WF
and VG inputs as long as the magnitude of the vector is constant. This is
equivalent to saying that the amplification is independent of input vector
direction. This implies that choosing on input vector consisting of a certain
WF with a VG magnitude of zero gives the same performance as a vector with any
other combination of Wf and VG inputs. Since this is so, WF alone can be used
to get good performance, and VG does not improve performance. Therefore, the
variable geometry was discarded as a method of improving NP governing. VG is
scheduled open-loop as a function of corrected gas generator speed as is done
in the baseline T700 control.

2.6 Sequence of Parameter Sampling

The Kalman Filter algorithm, as programmed, estimates the helicopter main
rotor angular velocity, NMR, one sampling period ahead of the measurements
that it uses for the computations. Because of this, the parameters should be
sampled just before or just after the new fuel flow level has been output to
the engine, that is, before the parameters have been affected significantly by
the new WF level. The value of estimated main rotor angular velocity that is
to be used in the computation of WF should not be the newly computed value
based on the new measurements, but rather, the previously computed value.
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Figure 2.82a Typical Singular Value Plot for a Two-Input,
Two-Output System with Integral Augmentation.

Figure 2.82b Singular Value Plot for VG-Input Analysis.
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2.7 Effect on Rotor Droop of Deviations from the Design Model

The LQR power turbine governor was first designed for an ideal system where
helicopted main-rotor blade velocity and torque states were measured, HMU
dynamics were neglected, antialias filters were excluded, and the heat sink
model was excluded. As the design progressed, the deviations from the ideal
were taken into account as described in Section 2.3.2. The effect on rotor
droop of each of these deviations in summarized in Table 2.3. The transient
used for comparison was a 40% - 70%, 0.1 sec burst not compensated with LDS.

Table 2.3. Effect on Droop of Approximations to the Ideal Model
Case: ' Peak Droop

Ideal Case:

(1) Actual NMR 0.73%
Actual QMR
No MU dynamics
No heat sink model

No lead compensation
No anti- alias filters

Changes:

(2) shaft torque used to 0.98%
approximate QMR

(3) KF used to estimate NMR 1.15%

(4) Shaft torque and estimated NMR 1.56%

(5) Shat torque, estimated NMR, 1.44%
and antialias filters

(6) Shaft torque, estimated NMR, 1.33%
antialias filters, and HMU
dynamics

(7) Shaft, torque, estimated NMR, 1.62%

antialias filters, HMU dynamics,
and lead compensator

(8) Sshaft torque, estimated NMR, 2.31%

antialias filters, MU dynamics,
lead compensator, and heat sink model
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2.8 Results

The LQR power turbine governor was analyzed in the time domain using the GE
nonlinear DISCUS model of the T700 engine. Four collective-pitch-angle
transients were simulated for comparison of the LQR governor with the baseline
T700 governor. Two of the transients were compensated with the load demand
spindle (LDS) as described in Section 2.1.11, and two of the transients were
not compensated with LDS.

The 1oad on the engine with the uncompensated controller was changed with
collective pitch angle, but the LDS was maintained constant at the starting
level. This causes the 1oad on the engine to change with no feed-forward
information going to the control. The two compensated transients were an
acceleration caused by a 0%-70% collective pitch angle burst in 0.5 sec and a
deceleration caused by a 70%-0% collective pitch angle chop in 0.5 sec. This
is a change of about 700 shaft horsepower.

The uncompensated transients were an acceleration caused by a 40%-70%
collective pitch angle burst in 0.1 sec and a deceleration caused by a 70%-40%
collective pitch angle burst in 0.1 sec. This is a 433 shaft horsepower
change. All transients were done with and without the model of the heat sink,
since the accuracy of the model is in question (Section 2.3.2.5). The system
was designed, however, as though the heat sink model were accurate because
this is the safer approach.

Tigures 2.83 and 2.84 show the 0%-70% collective pitch burst compensated with
LDS for the LR and T700 baseline governors, respectively. These simulations
do not include the heat sink. Figures 2.85 and 2.85 show the same transient
with the heat sink for the LQR and T700 baseline, respectively. The 70%-0%
collective pitch chops compensated with LDS with no heat sink model are shown
in Figure 2.87 for the LQR and Figure 2.88 for the T700 baseline. The same
chop with no heat sink model is shown in Figure 2.89 for the LQR and

Cigure 2.90 for the T700 baseline.

Fiqures 2.91 and 2.92 show the 40%-70% collective pitch burst compensated with
LNS for the LIR and T700 baseline governors, respectively. These simulations
do not include the heat sink. Figures 2.93 and 2.94 show the same transient
with the heat sink for the LQR and T700 baseline, respectively. The 70%-40%
collective pitch chops compensated with LDS with no heat sink model are shown
in Fiqure 2.95 for the LOR and Figure 2.96 for the T700 baseline. The same
chop with no heat sink model is shown in Figure 2.97 for the LQR and

Figure 2.93 for the T700 baseline. Tabe 2.4 summarizes the above results.

117



2 s S ©] QR NP GOV W/KF, 0-70C ) 1 DA BURST, CcOMP_ Q.01 DT :
=1 =1 =T =Tl b L R R R TR
N 7
i . . B 2
0 L3 O
[= 2 (=3 od o
= & & =T
o o ‘Z,f .
- (=2
241 81 & L TR e : ¥
[ ool R B H
- - &1 O
it (R : L gl .
o 4
2 & 2] o7 & &—— a8
i : . .
SN < e IR 25 M o 154 ) et bat . I
&1 81 9 .
O Ll )
- z a 1ii e Lo
ow]aojweln ;
Z@lZzWinYZz Py : R
o > I YOI P s
o |o |[x jo [F : S
ol o =3 ot y
wl o o_l w
~ ™ [ . :
aie |8 ko T
. o . o e . .
~ Y Y T AN
blooe
Py i
i RIEESE
wl o ol wli: - -
) - - o177
i I PEERN
b8! ) EO
: SRR
4. PRs g
T i
° okt
2 o o 2 s 5 o
1] 1 2 3 4 S [ 86544
23(E e TINE i PLT00?
{

PCNP1: NP (%)

PCN2: NG (%)

XLDSA: Load demand spindle (LDS) anticipation to control.
DYNANG: Load demand due to collective pitch.

Figure 2.83 LQR Np Governor with Black Hawk Rotor. 0% - 70% Collective

Pitch Burst Compensated with LDS. No Heat Sink Model.
0.5 Sec Transient.

18 IRIGINAL PAGS i&
OF POOR ‘QUALXTN



ORIGINAL PAGE I3
OF POOR QUALITY]

110
100
J
[}

N 45
L.

i E BQ‘S‘ E L IVN_E.__T..Z.Q,U’v_E‘LLT_FL_LﬁﬂPSJ_ (=7 0__31 53 LDA BURET, COME _

105
L
90
s
90

100

100
h

80
h
80

9|54

7

70
I Sa
[+

4T
)
[

90

60

60

90
L R

85

PCNP1
5
DYNANG
S0
XLDSA

S0
PCNe

80
1

<0
h

<0

80
i
|
|

75
N
30
30
i
75

70

20

20
3

70
—

65
i
10
10
h
65

60

0

0
60

PCNP1: NP (%)
PCN2: NG (%) .
XLDSA: Load demand spindle (LDS) anticipation to control.

DYNANG: Load demand due to collective pitch.

Figure 2.84 T700 Baseline Np Governor with Black Hawk Rotor. 0% - 70%
Collective Pitch Burst Compensated with LDS. No Heat Sink
Model. 0.5 Sec Transient.

119



[
2 2 b < A BURST, (COMP 01 DT
-1 -1 -1 - AR EREEE FREED FE Tl RN NER B RS FURTE EROE
w w [ A MR DO
&l of o] &
ol IR B e el I
° o SN [EUS EERSH ERERE EN
281 8] = t R A ‘:;x.i
W o o4 w N & _@ —
o [ ~ o Ve Pl et ) “'; ‘j,
it r\_/,dﬂ' R T e & 5 5]
o o ol oli:
<0 D O |
o s
— z T 1
awlJdolnoluw
Q > — (&) A
o jm] x o -
ol o] o] o
[ « -+ o
[ (= o u
~ ™ ™ ~
X < © (3]
o4 o (= o
™ o o -
il
'3 o4 o [
0 — - D N
RIS
H B
1 R0
f*{
3 o o Gff b
° (] wsaal 2 3 4 5 6 r 8 9 gossr V0
09/24/8 TIME ! PLTB07

PCNP1: NP (%)

PCN2: NG (%)

XLDSA: Load demand spindle (LDS) anticipation to control.
DYNANG: Load demand due to collective pitch.

Figure 2.85 LQR Np Governor with Black Hawk Rotor. 0% - 70% Collective
Pitch Burst Compensated with LDS. Heat Sink Included.
0.5 Sec Transient.

120



ORIGINAL PAGH IS
OF POOR QUALITY]

tio
j
100

108
h

90
h

100
h

80
h

9
?0
h

90
h

S0
f

PCNP1
5
DYNANG

80
h
4

20
h

S
i
10

g o o 3

0 1
09/24/84
-GUsS

PCNP1: NP (%)

PCN2: NG (%)

XLDSA: Load demand spindie (LDS) anticipation to control.
DYNANG: Load demand due to collective pitch.

Figure 2.86 T700 Baseline Np Governor with Black Hawk Rotor. 0% - 70%
Collective Pitch Burst Compensated with LDS. Heat Sink
Included. 0.5 Sec Transient.

121



110

100
|

100
1

SLQR NP GOV W/KF., 70-40 0.1S 1 DA CHOP, NCOMHA Dﬁpl DT i .
S0 RENEE FEEDS SRRNN EERSS SESHN FET A0 EROES RARRE PERRS SEURE FRRNN ERCE) ENE & RRESS FURS FREEY EERRE KRN ) SRR

105

105
I
90
90
N

IIOO

80

8¢
h

95
L
70
70
e

90
60
60
h
90 95

&
DYNANG
85

PCNP1
=0

XLDSA
SJO

PCN2

80
40
L
40
80

7?5
h
75

30
1
30

70
20
20
1
70

65
10
10
65

60
0

0
60

J

g
o7

N DD U SR SOutt EU B R B R -
>

4

?

B

-

1
5/84 TIME 8

[N
o

PCNP1: NP (%)
PCN2: NG (%)

XLDSA:  Load demand spindle (LDS) anticipation to control.
DYNANG: Load demand due to collective pitch.

Figure 2.87 LQR Np Governor with Black Hawk Rotor. 70%.- 0% Collective
Pitch Chop Compensated with LDS. No Heat Sink Model.

0.5 Sec Transient.

122



A

ORIGINAL PATE 13
OF POOR QUALITY

110

. S, S, SBASELINE T?700 WITH LAMPS., 70-0 0.5S L0Aa CHOP, CQUP

PRa

105
h
0
1
105

90
¢

100

80
Py
80

95
70
70
h
95
-

85

PCNP1
85
DYNANG
50
XLDSA
59
PCN2

8
4
49
80

(4
h
30
30
h
75

70
20
2
70
i

65
10
10
65
e o o ol ‘ 200 PR e R

»
|+ 0
b

»

o

>

»
B-

I RS UN SRt

09/04/84 s 8650 5
-Gus TIME ST

PCNP1: NP (%)

PCN2: NG (%)

XLDSA: lLoad demand spindle (LDS) anticipation to control.
DYNANG: Load demand due to collective pitch.

. . - 0%
Fiqure 2.88 T700 Baseline Np Governor with B1acg Hawk Rotor. 70% -
' Collective Pitch Chop Compensated with LDS. No Heat Sink

Model. 0.5 Sec Transient.

123



= 2. 2. SLGR NP GO

W/KF, 70-0 55 |.0a CHOP, COMP 0. {¢QT”' T

105

95
70
?0
95
i ::;:T": R B LI Pt I merisks s

105
n

90
h

90

100
1

80
n

8

90
\
60
60
h
90

85
i
85

PCNP1
DYNANG
s0
XLDBSA
50
PCN2

8
40
¢
80

75
I
0

A

75

70
20
h
20
70

65
10
19
65

»
|: 0
[ 3

60
0
o]
60
)
mn
Y
w
]
-

PCNP1: NP (%)
PCN2: NG (%)

XLDSA: Load demand spindle (LDS) anticipation to control.
DYNANG: Load demand due to collective pitch.

i 9 - 0% Collective
i R Np Governor with Black Hawk Rotor. 20
Figure 2.89 b?tchpChop Compensated with LDS. Heat Sink Included.

0.5 Sec Transient.

124



ORICINADR Pﬁm st
OF POOR QUALMTY

2 2. o S BASFEL INE T?700 WITH [AMPS, 70-0 0.5S 10DA CHOF., CONMP _ - '
o
o o4 o
- o S
o
o d o =&
- @ ®
v o =3
L3 ~ ~
ol o o]
3 0 o
[}
— z a
awldolJnodny
z®|zviaW|z
(8] > - Q
o [a] > 'S
=& o
@ - -
wl o o
~ ™ ™
X |49 |8
o ol o
~ « «
W ol o
e} - -
o J
T o o

PCNP1: NP (%)
PCN2: NG (%)

XLDSA:  Load demand spindle (LDS) anticipation to c
DYNANG: Load demand due to collective pigch. ontrol.

Figure 2.90 T700 Baseline Np Governor with Black Hawk Rotor. 79% - 0%
Collective Pitch Chop Compensated with LDS. Heat Sink
Included. 0.5 Sec Transient.

125




2 S1 2. 21QR NP GO W/KFE 40-70 0.1S DA _BURST, UNCOMP 0,01 DT
ol B Bl IR A EU S0 S R U EEE R DORAS S R O R REERS P
w ol |
o]l o] ol o i
— o o — B - - [ -
: s Ty
o o DA ‘ e
2l ol o o
- ® ® - /—#M,*a— e
v . - ; I '.
L N DD S i i L
w ol o wl - Al A N A ¢ A i:
o ~ ~ o L ‘l.\ T 37 [2) iy L [ 3 () I
: /) o
Y ST teie 8 = = 5 } £
ol ol ol oliidbe A R S P DS
o ] 0 o f
o A S : S
— 1Z 1 a T T . s
awldolwoluwl .
Zz® zw aw z® : : e . ot
O (> |a | |- L EERRE i
o (@] = a - i - i
wl o ol w - - . :
(2 ™| ™ n . PR . N
X < © 3] -
=} o o o
o1 21 21 % EEER R
3 3 -
o o
0 1 2 3 4 3 6 7 8 9 10
09/21/84 8G441
~6US TIME PLT007

PCNP1: NP (%)

PCN2: NG (%)

XLDSA: Load demand spindie (LDS) anticipation to control
DYNANG: Load demand due to wind gust, constant collective pitch

Figure 2.91 LQR Np Governor with Black Hawk Rotor. 40% - 70% Collective
Pitch Burst not Compensated with LDS. No Heat Sink Model.

0.1 Sec Transient.

126



Ty AT e

ORIGINAL PATT
OB BOOR "QUALIT'Y

b

2. 8, s 2_BASE
- - 1 - " L

r
1
1

LINE T200 WITH
g I R

i
G300, 40-70 OALS$LDq4!jRSTy UNCONME

0

h

0

h

0

h
105

0

1

0

h

0

h
100

[
0
1

95

90
s
0
h

60
h
0

PCNP1
85

DYNANG
S0

PCN2

T
RSN | I| [ .
brooiii ; | : - I I PR
PSR i SRS i i i | o :
B I SR LRy R X .. PN :
. B 1 H H . . B
¥ . o : i
.";.::_;:?::.' o AR sk s I Dl e
SR ESE RO R Al |
X - - SRS EEE e e £ -
R RN SR P . : 1 RIS O = [
A A # At —dh A T A o
o RS VAR B S 2 T £3 e -5 et i3
’ ot : : o : EREE i
i P{ g
=== - !
A & s ke & . @ N

7
2
2
70

65
1
1
65

6
0
0

50

PCNP1 :
PCN2:
XLDSA:
DYNANG:

Figure 2.92

NP (%)
NG (%)

TIME

Load demand spindle (LDS) anticipation to control.
Load demand due to wind gust, constant collective pitch

127



. 2. 8 21LQR NP GO W/ZKF. 40-70 0 S DA BURST., UNCOMP 0,01 DT
ol el I el SERE SERES EENES FEREE FSRRY BRES R S EURRE MOS0 SS N SR Y FEETY EEIN EEs o8 DEREA FERFS TR FEESE FER
oii S SR NN RS [ A S
w - R SRR REEN o RS ISR EES
(=19 oJd o
- o o B B N - - -l
° IS RGNS BERSE PERE i oyt e
21 21 &7 € MWV e S =02 TR
81 81 = 2+ A A A o R A 4
ol ol o ] R S B
- 0 0 i [ .
o g R R
~ |Z |& ' ARG
awldolwoluwll
z®lzv 0|z S
(&) > - (&) - N .
o o x a. : N
o =3 a%'j‘ O as. a Ly & m N Ty
] A g <+ @ i ] =
w o] a w R
~ o ™ ~ ]‘
X <o |8 ——
o]l ol o] o ! i
~ & o ~ I t -
H i
+ h
1
e
wn o o w ’ ’
D - - D '\ : -
o i ' !
i 1 i t
[ 1
J ] | | -

5 ‘
4 86985
degre TIME PLTO0?

PCNP1: NP (%)

PCN2: NG (%)

XLDSA:  Load demand spindle (LDS) anticipation to control.
DYNANG: Load demand due to wind gust, constant collective pitch

Figure 2.93 LQR Np Governor with Black Hawk Rotor. 40% - 70% Collective
Pitch Burst not Compensated with LDS. Heat Sink Included.
0.1 Sec Transient.

128



110
100
100
110

108

P f o) [ S S

ORIGINAL PAGE IS
OE POOR ‘QUALITY

_ﬁ&SLLL¥E_%ZQD_ﬂ,T ANPS. 40-70 0.1F Lpa pR Ty,UNCONP’ e -

105
h
90
)
30

100
L
80
80
h
100

\ ol N ‘
-
i :
]

95
70
1
70
95

30
60
60
.
30

8%
I
85

PCNP1
DYNANG
S0
XLDSA
S0
PCNe

80
I
4

1
; : | »] - : ! : |
I ERRON EENT : { o !
S FEEES SR 1 : ! s o !
NG T | S FRRSS PR ERER O ¥ :
‘[.éfw,‘ﬁ — LA s " A A A 4
A | - : ;
' /\TE/ 5 &5 =2 = B
B A e . K :
| i i R DS EE ! v i
e : L . i
ol o o SERS i
e ! - [ -
. S EEEY BN S DU EEON O K j 1 :
.\ & ':'ﬁ\: im &} as! & PR ;
L ‘ i i Tl - '
B : - 1 o '

75
h
30
30
I
75

70

20
1

20

65

10
1

10

PCNP1 :
PCN2:
XLDSA:
DYNANG:

Figure 2.94

NP (%)

NG (%)

Load demand spindle (LDS) anticipation to control.

Load demand due to wind gust, constant collective pitch

T700 Baseline Np Governor with Black Hawk Rotor. 40% - 70%
Collective Pitch Burst not Compensated with LDS. Heat Sink
Included. 0.1 Sec Transient.

129



2 g_{ = SL&R’ NP GOV WN/KFE 70-40 Q0 S I_[DQ CHOJF’y NCOMP_ 0,01 DT I
ONE ST PR o | N -
v = 2 wli | ! R ; i o -
- o R R N | E :
! xl e : S E 1R ! ! "]‘
Pt N T S
2l ool o s Nt L el Lol
N R B R T R : I N S I ! o
- : L ; 1 I |
U ERNRS RS R i I 1 . BE ik
R R i T I R S
: : s : | :
- g B ‘[ : B I
o o - o it : A . Lo o ' 1
o 0 0 o H % ‘ . : { - i
! . : : . o ! : .
e . ;: : %/ﬂ A /‘?ﬁ\_,.{?-——— = =5 o —H
awlidoimoluw ] i | i ! I
Z® > QW] T . R B . i H N e I
G > 13105 \J( e RN P Ao :
o o |x |a : : ; |
: S ! o :
81 91 ¢4 2 o PLIELEE NS SR a! .:‘4 = e
177 ° EREm T 3
oo ! I B :
N EEERE EE ‘ f?",‘ T
wl o) of w o - -
~ ™ ™ ~ [ ] T
X |a e |8 +— - T
~ 1] o [\ . N
W o o [7;3
0 - - 0
1 ERESY REEN ERRRY RESES BRSO ERRRY ERERE SURN) EVHY EOS t
3J JdJ ' ’
0 1 2 3 4 5 6 8 9 10
03557+ TirE g1,

PCNP1: NP (%)

PCN2: NG (%)

XLDSA:  Load demand spindie (LDS) anticipation to control.
DYNANG: Load demand due to wind gust, constant collective pitch

Figure 2.95 LQR Np Governor with Black Hawk Rotor. 70% - 40% Collective
Pitch Chop not Compensated with LDS. No Heat Sink Included.
0.1 Sec Transient.
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Load demand spindle (LDS) anticipation to control.

Load demand due to wind gust, constant collective pitch

T700 Baseline Np Governor with Black Hawk Rotor. 70% - 40%
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Included. 0.1 Sec Transient.
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Table 2.4. Comparison of Droop and Overshoot of T700 Baseline
and LQR Np Governors with Black Hawk Rotor

Event Droop (-) or Overshoot (+)

T700 Baseline LQR

1. 40% - 70% beta*, uncompensated**, 0.1 sec

- with no heat sink -2.67% -1.62%

- with heat sink -3.09% -2.31%
2. 70% - 40% beta, uncompensated, 0.1 sec

- with no heat sink +2.83% +1.64%

- with heat sink +3.37% +2.70%
3. 0% - 70% beta, compensated**, 0.5 sec

. - with no heat sink +5.10% +0.71%/-0.74%

- with heat sink +5.38% -0.79%
4. 70% - 0% beta, compensated, 0.5 sec

- with no heat sink -4.50% 0.60%

- with heat sink +1.87%/-5.35% +2.82%

* beta is collective pitch angle
** compensated or uncompensated with LDS
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The effect of the Kalman Filter on rotor droop was assessed by simulating a
transient using the actual main rotor speed and a transient using the
estimated main rotor speed. These simulations have no heat sink model,
antialias filters, ZOH model, or HMU model. The transient was a 40%-70%
uncompensated collective pitch angle burst in 0.1 sec. Rotor droop on the
transient with the Kalman Filter increased from 0.98% droop to 1.56% droop.
This is a large but acceptable effect. Figure 2.99 is the transient with the
actual main rotor speed and Figure 2.100 is the transient with the estimated
main rotor speed. Figure 2.101 shows how estimated main rotor speed tracks
actual main rotor speed for a typical transient.

The gain and phase margin results of the frequency domain analysis were tested
for one transient in the time domain by separately doubling the gain and
adding phase lag at unity gain through a time delay. Doubling the gain is
equivalent to raising the magnitude plot 6dB. The time transient was a 40%-70%
collective pitch angle burst in 0.1 sec with no LDS compensation. The time
response for the system with doubled loop gain is shown in Figure 2.102. The
system is only slightly less stable indicating there is gain margin in excess
of 6d8. Table 2.1 shows there should be a minimum of 10dB gain margin. A
delay of 0.08 sec was added to the system to assess phase margin. The delay
has unity gain and contributes 45° phase lag at 10 rad/sec. 45° phase margin
is a minimum acceptable margin for stability. The time response is shown in
Figure 2.103. The system is less stable, but still settles down, indicating a
minimum of 45° phase margin.

The LQR Np governor shows about a 37% reduction in droop and overshoot for the
transients not compensated with LDS and about an 85% reduction for transients
compensated with LDS. The uncompensated transients are a good indication of
controller performance because there is no anticipation of load demand going
to the control. The controller must respond after the disturbance has
occurred. If one knows the characteristics of the disturbance before it
occurs, one can design feed forward compensation to minimize the effects of
that disturbance. For the compensated transients shown in the figures, the
LQR substantially reduces droop using a very simple LDS compensation. The
compensation is not in the form of dynamic leads and lags but in the form of
approximate reference schedules that vary with LDS. Engine testing and
simu}ations with more accurate vehicle models are necessary to verify these
results.
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3.0 Introduction: Linear Model Identification

Accurate information concerning the dynamic behavior, or frequency response,
of gas turbine engines is essential for the design of high performance engine
controls. Engine controls, evaluated in the time domain, are designed in the
frequency domain using digital computer engine models. FEmpirical engine data
provides a benchmark for checking the validity of the basic engine models.
Discrepancies between experimental and analytical engine frequency responses
indicate areas of uncertainty in the control system design and help to
identify areas of potential improvement in the engine computer models.

Traditional methods of obtaining engine frequency response, such as discrete
sinewave testing, are time consuming processes. The sinewave stimulates a
single frequency in the engine, and is correlated with the output response to
obtain some measure of attenuation and phase shift. Measuring the frequency
response characteristics of the engine at several frequency points can take
anywhere between two days to a week including setup and instrumentation
validation. This process must be repeated for each engine operating point of
interest. Substantial time and cost savings could be realized, however, with
a more efficient means of gathering frequency response data.

Pseudo-random binary noise (PRBN) frequency response testing is used as an
alternative to traditional frequency response testing methods. The use of a
random signal that, by definition, contains a wide range of frequencies,
speeds the acquisition of frequency response data. With the PRBN testing
technique, a range of frequencies in the bandwidth of interest is injected
simultaneously into the engine, as opposed to individually with sinewave
testing. Theoretically, only one period of the PR3N signal is needed to
excite all the engine dynamics in the PRBN range of frequencies. For gas
turbine applications, the effective PRBN period is approximately one minute,
providing the potential to considerably reduce the test cell time required to
obtain engine data. The frequency response is derived from the engine data
using analytical correlation techniques. This analysis is easily performed
off-l1ine with a digital computer, effectively reducing the amount of data
reduction required compared with sinewave testing.

R. V. Cottington and C. B, Pease (Ref. 16) have demonstrated successful
dynamic response testing of gas turbines using a PRBN testing technique in

conjunction with spectral analysis. A number of engines were analyzed using
this method, and results compared very well with sinewave testing data.

The objective of the PRBN testing of the NASA T700 engine was to illustrate
the use of PRBN testing as an accurate and expedient method of obtaining
engine frequency response data compared to traditional methods such as
discrete sinewave frequency response testing. The PRBN method also allows the
evaluation of existing 1inear models by comparing model and engine frequency
responses. In addition, the PRBN technique lends itself to creating linear
engine models by fitting reduced-order models to engine data and identifying
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engine partial derivatives. Evaluating linear engine model responses and
partials in this manner will reveal areas of potential improvement and provide
more accurate engine models.

A PRBN signal superimposed on a steady-state fuel flow command signal was
injected into the fuel flow actuator. Engine input (fuel flow, WF) and output
{(gas generator speed, NG, and power turbine speed, NP) time series data were
analyzed by an off-l1ine digital computer used to recover the engine frequency
response through separate spectral analysis and maximum likelihood (ML) model
jdentification techniques. NASA-supplied sinewave test points were used to
evaluate the PRBN test results. A reduced-order model was obtained from the
ML results, and engine partial derivatives were identified and compared to
those of a linear engine model.

3.1 Procedure
3.1.1. PR8N Test

The following procedure details the equipment and techniques used to conduct
the PRBN testing of the NASA YT700 engine.

3.1.1.1 Hardware
The hardware required for the engine tests include:
- Two consoles within the llybrid Computer Simulation Facility.
- The microprocessor control, Engine Monitoring and Control (EMAC), unit.

- An interface unit to act as a feedback "loop closer" and to drive
electrohydraulic servo valves,

- A YT700 engine.

- A modified YT700 control (ref. contract NAS3-22763).

- An engine loading device (i.e. eddy current dynamometer).
- A sea level static test stand.

- An analog computer (TR43) to schedule engine loading and other
calculations as required.
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3.1.1.2 Data Acquisition

Data from engine tests performed at the Engine Components Research Laboratory
(ECRL) was recorded as follows:

- Steady-state data was recorded on the Lewis central steady-state
?ystem)(ESCORT) and on the Microcomputer Interactive Data System
MINDS).

- Transient data was recorded on visicorders, on the Lewis central
analog system, and on safety tape.

3.1.1.3 Test Matrix
The PRBN test was performed with the following engine configurations:

- Variable geometry (VG) system locked at steady-state scheduled
position.

- 90% Ng power point.

-  EMAC fuel flow command locked.

- 5 Hz PRBN signal imposed on steady-state fuel flow command signal.
The PRBN signal amplitude was approximately 20% peak to peak of the
steady-state command signal. The test period was approximately 9 minutes long
with data sampled at 200 Hz (200 samples/sec). The test was performed at sea
level static conditions.

3.1.1.4 Data Reduction

The middle 5 minutes of engine data were used in the analysis to avoid any
start-up or shutdown transients. All statistical analyses were performed with
IDPAC software (Ref. 17).

3.2 Analysis
3.2.1. Time Series Analysis

Figure 3.1 shows the PRBN command, WF, NG, and NP signals for a represent-
ative data sample slice. Since the PRBN command signal and consequently WF,
NG, and NP exhibit random behavior, the correlation between the engine input
and outputs is obtained through statistical analysis. An underlying
assumption made in this analysis is that the engine is operating at steady
state in the sense that the statistical properties of the time series are
stationary or independent of absolute time. This assumption is tested by
comparing the individual statistical properties of several consecutive minutes
of data in the following analysis. Also implicit in the analysis is the

143



PRBN Command Signal

.5 ]
M
N
-
-9.5 4L AN | = L L
i .. s. 18 "* Time (sec)
1
|
WF Signal
9.2
&
(4]
-0.2 v
o s. 10. 18.
Time (sec)
Ng Signal
i 1000.
=
a.
(<4
-1000. \ ..
. 5. 10. 16.
Time (sec)
i Np Signal
S00. 4
|
‘ E -
o
-508 v ’ '
. . 18. 18.
Time (sec)
Figure 3.1 Engine Data Slice.

144



assumption that the engine data is ergodic; i.e., the statistical properties
of the data are independent of the particular sample. The statistics for the
same engine under the same conditions, therefore, should be identical. The
ergodic assumption cannot be tested, however, with only one time series sample.

3.2.2 Frequency Response

The statistical properties of the engine data show the correlation between the
engine input and outputs. The cross-spectrum Yxy( w ) of the engine input
and outputs and the autospectrum yyx( w ) of the engine input give a

measure of the attenuation and phase shift between input and outputs. The
cross and auto spectra are obtained from the statistical properties of the
engine data. The engine frequency response transfer function H( w ) is

Hw) = 7xy(w)/ fxx(w) . (3.1)

The statistical properties and spectral analysis of the engine data are
explained in detail in the following analysis.

3.2.3 Statistical Properties

The statistical properties of the engine data are obtained for a
representative one minute time slice. Comparison of several minutes of time
series data verifies the stationary process assumptions made,

3.2.3.1 Autocovariance Function

The autocovariance function (ACVF) Pxx( T ) of a stochastic stationary
process x(t) is the mean or expected value of the product of the centered
processes x(t) and x(t + T ) so that

P xx (t)=E {[x(t) - mx] [x(t +T7) - mx] (3.2)

where E denotes expected value, T is the lag or difference between two
instants of time t1 and t2 during the process, and my is the mean value of
x(t). The ACVF shows how the dependence or correlation between adjacent
values of f(t) changes with the lag T . A discrete time estimate of the ACVF
used in the IDPAC computer software is expressed as

N ~-T

Ry (T) = ¢ 3 Ixy Klxg , o K] (3.3)

t=1

T=0,1,..(N-1)

where N is the number of discrete data samples and x is the sample mean. The
sample mean x is

X = o 3 X (3.4)
X = o
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An appreciation of the significance of the ACVF is obtained by considering the
normalized ACVF ryyx ( T ) where

rex ( T) =Ryx (T )/ 0 x 2 (3.5)
and oy 2 is the variance of the function x(t). The value of the
normalized ACVF lies between the limits -1 and +1, which correspond to 100%
negative and 100% positive correlation, respectively.

3.2.3.2 Cross Covariance Function

The cross covariance function (CCVF) ”xy ( ) of a stochastic stationary
process with input x(t) and output y(t) is

Pyy = E |Ix(t) - m] Dy(t + 7 ) - myl (3.6)

The cross covariance function indicates how the correlation between the input
and output change with a shift in relative time 7. A discrete time estimate
of the ACVF is expressed as

N-T
_ ) : ;
ny () = § . E 1[xt -x][yt +T -y] (3.7)
T= =(N=1),..50,..,(N-1)
The normalized CCVF ryy ( T ) is
Y'xy(T)=ny(T)/(0'x0'Y) (3.8)

where o x and oy are the standard deviations of x(t) and y(t),
respectively.

3.2.3.3 Statistical Properties of the PRBN Signal

Figure 3.2a shows the normalized autocovariance function for a representative
one minute sample of the PRBN command signal. The normalized ACVF for an
jdeal white noise signal (i.e. a signal containing an infinite range of
frequencies) is equal to unity for 7 equal to zero (i.e. it is perfectly
correlated with itself) and is equal to zero elsewhere. The normalized
autocovariance function shown in Figure 3.2a is, therefore, an approximation
to that of ideal white noise. Figure 3.2b shows ryx(7 ) of five consecutive
one-minute samples of engine data.

3.2.3.4 Statistical Properties of Fuel Flow Signal

Figure 3.3a shows the normalized ACVF for a representative one minute sample
of the fuel flow signal WF. Figure 3.3b shows the normalized ACVF of five
consecutive one-minute samples of engine data.
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3.2.3.5 Statistical Properties of NG Signal

Figure 3.4a shows the normalized ACVF for a one minute sample of the NG
signal. Figure 3.4b shows the normalized ACVF of five consecutive samples of
engine data. Figure 3.5 shows the normalized CCVF between the input WF and

output NG for a one minute sample.

3.2.3.6 Statistical Properties of Np Signal

Figure 3.6a shows the normalized ACVF for a one minute Np signal sample.
Figure 3.6b shows the normalized ACVF of five consecutive one-minute samples
of engine data. Figure 3.7 shows the normalized CCVF between WF and Np for

the one minute sample.

The statistical properties of the engine input and outputs of several
consecutive one-minute samples are quite similar, supporting the stationary
process assumptions made.

3.2.4 Spectral Analysis

3.2.4.1 Autospectrum

The autospectrum ¥ yx( @ ) of x(t) is the Fourier transform of the ACVF
Rxx( 7 ) where

7xx(“’)='2'1’r'r__°[ Rex ( 7) &

The autospectrum is the frequency decomposition of x(t). A smoothed spectral
estimate of the autospectrum used in the IDPAC computer software is

-jwT

dr (3.9)

L
R (0) +2 £, R (7)C0S (@ T 7) gy (7)0(3.10)

T

T
Sl@) ==

where NB¥( r ') is a Blackman-Harris window and T is the sample period. The
intent of the window is to introduce an equalizing effect in the estimated
autospectrum. Increasing the number of lags decreases the "width" of the
window and gives the spectral estimate more resolution.

The autospectrum of a one minute PRBN sample is shown in Figure 3.8. An ideal
white noise signal has a uniform spectral density over all frequencies.

Figure 3.8 shows that the PRBN signal has a uniform spectral density over the
frequency range of 0.1 to 40 rad/sec. The PRBN signal is referred to as
band-1imited white noise in this region. Figure 3.9 shows the autospectrum of
WF for a one minute sample,
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3.2.4.2 Cross-Spectrum

The cross-spectrum Yxy( @ ) relating the input x(t) and output y(t) of an
arbitrary process is the Fourier transform of the CCVF Ryy( 7 ) where

)’xy(w)=_217_r_foy(T)e".“’TdT . (3.11)
-0

The IDPAC computer software uses a smoothed spectral estimate of the
cross-spectrum, Sxy( @ ), obtained by dividing the CCVF into even and odd
functions Ev( 7 ) and O( 7-), respectively, where

EV(7)=1/2[Rgy (7 ) + Ryy (-7 )] (3.12)
and

O(T)=1/2[ny(7)'ny ('T)] (3.13)
Equations (3.12) and (3.13) are used to compute the real and imaginary parts
of the Fourier transform, RS( @ ) and IS( @ ), respectively, which are

. i )
RS(w ) = [EV(0) +1/2 3 EV(7)C0S(wTr)Hgylr)l(3.14)
7= ]

and

L
15( ) = 2 I D00 SN (e 7 Uy T (3.15)
The magnitude of the transform is
Sy (@ )| = {TRst 0122+ L1s(w 122 h/2 (3.15)

and the phase angle is
gyl @ ) = ~tan-! [IS(w )/RS( @ )]. (3.17)

The cross-spectrum of WF and NG is shown in Figure 3.10. Figure 3.11 shows
the cross-spectrum of WF and NP.

The frequency response H( @ ) of NG versus WF, and NP versus WF is obtained by
dividing the cross and auto spectra where

The frequency response of NG versus WF is shown in Figure 3.12. Figure 3.13
shows the frequency response of NP versus WF,
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3.2.5 Maximum Likelihood Model Identification

Model identification techniques are used as an alternate method of obtaining
the frequency response of the T700 engine from the time series data. An
optimal model of the engine was identified using a maximum 1ikelihood (ML)
model identification algorithm. The ML estimate of a multi-input, single
output system is of the form

n
Az y( 7 = = 8 (2 Tyx 0+ e et (3.19)
'|=
Subject to minimizing the loss function
7N 2
vie ) = vl .21 e (t) (3.20)
'|=
where A = characteristic polynomial
y(t) = system output
Bj = qinput polynomial coefficients
z-1 = 7 transform unit delay
Xy = system inputs
n = number of inputs
A = Tlambda
c = residual polynomial
e(t) = residual
0 = (@]ye0es Ans DYseces DImseces DpYseees

bnm, Clseee ,Cn)

The residuals in equation (3.19) can be visualized as noise corrupting the
output of a deterministic model. The use of the ML algorithm was chosen so as
to handle the general case where the residuals are correlated. The problem is
solved by estimating the parameters in 8 subject to minimizing equation (3.20)
and providing the maximum 1ikelihood estimate of X by

A2 = 2 Vv(g) (3.21)
N

where B is the minimum point of V.

The best ML estimate for the NG/WF model was determined to be of eighth
order. Software limitations prevented the identification of higher order
models.

The accuracy of the model was evaluated by testing the residuals of equation
(3.20). The normalized ACVF of the eighth order model residuals is shown in
Figure 3.14a. The normalized CCVF of the input WF and the residuals for the
eigth order model is shown in Figure 3.14b. For an ideal model, the residuals
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should be white noise; i.e., the normalized autocorrelation function should be
equal to unity for 7equal to zero, and zero elsewhere. The CCVF between the
input and residuals should be zero everywhere; i.e., the input and the output
noise are uncorrelated. The figures contain a 5% tolerance band indicating
the region inside which the estimates of the residual correlations should lie
if the input and residuals are independent, or uncorrelated.

The best ML estimate for the NP/WF model was limited to eighth order, also.
The normalized ACVF for the eighth order NP/WF model is shown in

Figure 3.15a. Figure 3.15a shows the normalized CCVF between the input and
residuals for the eigth order NP/WF model.

3.2.5.1 Model Frequency Response

The transfer function of the ML model is

-1
. B, (z ) :
Hy, (0 ) = 211 (3.22)
ML Alz '1)

II.[V]=

The frequency response of Hy ( @ ) for the NG/WF eighth order model is shown
in Figure 3.16. Figure 3.1yLshows the frequency response of Hy (@ ) for

the NP/WF model. Figure 3.18 compares the ML model and spectra* analysis
results for NG/WF. Figure 3.19 compares the ML model and spectral analysis
results for NP/WF. Discrepancies are seen between the engine frequency
responses obtained through spectral analysis and those obtained by model
jdentification techniques. The magnitudes of the spectral analysis frequency
responses are consistently lower those that of the maximum 1ikelihood
results. dJenkins and Watts (Ref. 18) show that the smoothed spectral density
is considerably underestimated for a relatively low number of lags, 7.
Software limitations restrict the maximum number of lags to 500. For a one
minute sample slice of 12,000 data points (200 Hz sampling rate) the maximum
number of lags is only 4% of the number of data points compared to a
recommended 5% to 20%. The magnitude, break frequency and, consequently, the
phase of the frequency responses are quite biased under these conditions.

3.2.5.2 NASA Discrete Frequency Data

Table 3.1 lists the magnitude and phase of the engine discrete frequency test
points supplied by NASA. Figure 3,20 compares the magnitude and phase of the
discrete frequency points and ML model for NG/WF. Figure 3.21 compares the
magnitude and phase of the NASA data and the ML model for NP/WF.

The ML model frequency response compares very well with the NASA discrete
frequency points for both NG/WF and NP/WF.
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3.2.5.3 Identifying Partial Derivatives

Reduced order models were obtained from the ML frequency response data and
compared to the simplified 1inear engine model, shown in Figure 3.22, in order
to identify engine partial derivatives.

Table 3.1 NASA Discrete Frequency Nata

W(rad/sec) Gain, RPM/PPH (dB) Phase (degrees)
NG/WF NP /WF NG/WF NP /WF
0.314 23.9 26.5 -10.0 -39.0
0.628 27.7 24.0 -29.0 -65.0
1.257 25.8 18.5 -50.0 -100.0
1.885 23.2 14.5 -56.0 -109.0
3.142 19.8 7.3 -90.0 -119.0
4,392 18.4 4.6 -90.0 -117.0
6.233 14.9 3.4 -94.0 -120.0
12.566 11.2 -1.5 -100.0 -118.0

3.2.5.3.1 A NG/ AWF

Figure 3.23 compares the gain and phase of the linear model and eighth order
ML model of NG/WF. There is less than a 3db difference in magnitude and
approximately 10 degrees difference in phase at 10 rad/sec.

The state-space equation for NG derived from Figure 3.22 is

ate = L (2% awg o+ = (2B aw (3.23)
JG a9 NG JG o WF
Note that all partials in 3 VG are neglected since the engine is tested with
locked variable geometry. The partial derivatives in the linear model were
calculated using locked VG, The effects of PS3 and T45 are also neglected
since the corresponding dynamics are assumed to be fast compared to QG and QPT
dynamics.

The Laplace transform transfer function for ANG/ A WF derived from equation
(3.23) is

1 o QG
AN _ J&__TBWF
& o NG

162



A Psy

D2V J\ bké:
D¢ ). o8 DN
a?s‘ 3?53
DNa DN
>G.
DNy
— A fng
} mﬁ‘ + \ ‘ ! i\ A '\)s;
e ~ Ss S [
=8N SNe
A iy
AWE L P ﬂj{ N LA Tag
[ 2o P [ -
>Tqe S 5
2N o ONp
0t
—E 1
! R A QP >
IpS
AN Qs +
>V Krer
h—s—d -
-+
1
TS
Dm§e
Figure 3.22 Linear Engine Model.

163




(RPM/PPH)

MAX TR L TKE

LINEAR "MODEL

o
o —
(=}
(=]
—_ Lt v e e oy v e T e SO TR T D 4y G i L
’.OAl 2 3 456789 2 3 456789 2 3 456789 2 3 45678910(
W (RAD/SEC)
: CIKECTHEDD NG/HE" rlbu§r;L
EAR MODEL "(WTTH DYNO) -
w
~
of
[da}
w
O,
— -
)
!
%2}
e
I
o
o
o
1
V24
™
[
Qe O i LT T T EWREI NN R WA AR A BVISTHTIRRESCIBIT)
'.01 2 3 456789 2 3 456789 2 3 4567891 2 3 45678910
W (RAD/SEC)

Figure 3.23

NG/WF Frequency Response.

T
I3

ORIGINAL PAGS

164



where JG is the gas turbine inertia;

JG = 0.00466 ft. 1b. sec/RPM (3.25)

A reduced order Laplace transform transfer function for the NG/WF ML model is
computed from the frequency response data using an iterative curve-fitting
program that minimizes the gain and phase error between the computed and
actual frequency response data. The identified NG/WF transfer function,
restricted to a first order model fit, is

ANG | 30.09 (3.26)
A WF (s +1.075)

The partials 3 QG/3WF and 310G/ o NG are identified by equating equations
(3.25) and (3.26). Table 3.2 compares the identified partials with the
computer generated linear model partials. The identified and 1inear model
partial derivatives compare fairly well. :

Table 3.2. NG/WF Partials (92% NG)

Partial Identified Linear Model
3QG (ft.1b) -0, 0050 -0, 0067
NG TRPMY

2176 (ft.1b) +0.14 +0. 21
HF  (RPM)

3.2.5.3.2 A NP/A WF

Figure 3.24 compares the gain and phase, of the A NP/ A WF linear model and

eigth order ML model for NP/WF, The linear model frequency response diverges
from that of the ML model at higher frequencies. There is approximately 4 db
difference in magnitude and over 30 degrees difference in phase at 10 rad/sec.

The state-space equation for NP derived from Figure 22 is

AN = 1 o T s\ng + ! 0 ®T _p,  |anp(3.27)
(JPT + Jn) 3 NG (JPT +JD) | 3 NP y
where JD is the dynamometer inertia,
JD = 0.0371 ft.1b sec (3.28)
TR
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and JPT is the power turbine inertia,

JPT = 0.0108 ft.1b sec (3.29)
—

The dynamometer damping, D dyno, is

Ddyno = 0.0089 ft.]b (3.30)

Note that the dynamometer model was further simplified by assuming an infinite
power turbine/dynamometer shaft stiffness Kyot. The dynamometer and power
turbine inertias are, consequently, lumped together.

The Laplace transform transfer function for ANP/A WF derived from equation
(3.27) is

1 aQPT 1 5 Q6 8 QPT YT 3 Q6 :
A NP (*JT' 3 )S - 5w S - 5 5 )J
ATE = TG ' (3.31)

1 3 (4 1 o QPT
- 7 5w -3 5w - Payno V)

where JT is the Tumped dynometer/power turbine inertia.
JT = JPT + JD. (3.32)

The NP/WF transfer function obtained from a second-order fit of the ML
frequency response data is

ANP _ (0.0021) s + 54.26
AWF (s +0.3702)(s + 9.66) (3.33)

The remaining engine partial derivatives are obtained by equating equations
(3.31) and (3.33). Table 3.3 contains the partials derived from NP/WF.

Table 3.3 NP/WF Partials (92% N3)

Partial Identified Linear Model
3 OPT(ft.1b) +1.01 x 10-4 +0.35

o WF— TRPMY

3 QPT(ft.1b) -0.47 -0.009

o NP TRPMY

o QPT(ft.1b) +0, 089 +0.0017

a NG TRPM)



Table 3.3 indicates that there is a very poor correlation between the
identified NP/WF partials and the linear model partials.

Since the NP/WF ML model and 1inear model frequency responses didn't compare
well past 1 rad/sec, a poor correlation between the identified partials and
linear model partials was expected. The divergence of the linear model
response from that of the actual engine is attributed, in part, to the linear
model dynamometer representation.
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4.0 Introduction: Variable Geometry 0ff-Schedule Modeling

The design of high performance turboshaft engine control systems focuses on
modern control and adaptive control techniques which improve overall
helicopter performance and reduce pilot workload. Some adaptive control
feature concepts under current investigation at General Electric are aimed at
improving engine transient response through control of the engine variable
geometry (VG).

The conventional control system design procedure involves the use of detailed
engine computer models during preliminary design efforts. In order to
adequately design and implement control systems based on modified VG control
schedules and algorithms, VG off-design performance must be validated in the
engine models.

The objective of this study was to investigate the compressor variable
geometry off-angle effects through analysis of the NASA YT700 engine test
data. Off-schedule VG data were used to validate the L0023J DISCUS T700
engine transient computer model.

Steady-state test data were obtained with the nominal VG schedule, 6 degrees
off-schedule in the open direction, and 6 degrees off-schedule in the closed

direction conditions. The performance data were compared with data obtained
from T700 transient model simulations.

4,1 Procedure

4.1.1 off-Nesign VG Test

The following procedure details the equipment and techniques used to conduct
the off-design VG testing of the NASA YT700 engine.

4.1.1.1 Hardware
The hardware required for the engine tests include:
- The microprocessor control, Engine Monitoring and Control (EMAC), unit.

- An interface unit to act as a feedback "loop closer" and to drive
electrohydraulic servo valves.

- A YT700 engine (207214-34).
- A modified YT700 control (ref. contract NAS3-22763).
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- An engine loading device (i.e., eddy current dynamometer).
- A sea level static test stand.

- An analog computer to schedule engine loading and other calculations
as required.

4.1.1.2 Data Acquisition

Steady-state data from engine tests performed at the Engine Components
Research Laboratory (ECRL) was recorded on the Lewis Central steady-state
system (ESCORT) and on the Microcomputer Interactive Data System (MINDS).

4.1.1.3 Test Matrix

Engine performance data were recorded with VG off schedule by O degrees
(nominal), 6 degrees in the open direction, 6 degrees in the closed direction,
3 degrees in the open direction, and 3 degrees in the closed direction.

1. Nominal schedule performance. The following procedure was used to
conduct engine testing on the nominal VG schedule.

a. Advance LDS to achieve a minimum of 92% corrected core speed
(NG//6 ) and hold for 10 minutes.

b. Advance LDS to maximum load (slowly), hold for 5 minutes, and take
steady-state reading.

c. Advance LDS (very slowly) to achieve the following corrected
speeds and take steady-state readings:

e Maximum (approximately 95%)

 93%
e 90%
o 86%
e 83%

o 78% (VG schedule break point)
o 73%
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2. O0ff-schedule (6 degrees in open direction).

a. Advance to 95% NG/A/ and stabilize for 5 minutes. Reset stage 1
VG to 6 degrees open from nominal. Record data.

b. Repeat procedure 1.c. for 6 degrees off-schedule (open).
3. O0ff-schedule (6 degrees in closed direction).

a. Advance to maximum power and stabilize for 5 minutes. Reset stage
1 VG to 6 degrees closed from nominal. Record data.

b. Repeat procedure 1.c. for 6 degrees off-schedule (closed).
4. Repeat parts 2. and 3. for 3 degrees open and 3 degrees closed.

4.2 Analysis
4.2.1 Analysis of 0ff-Angle HPVG Steady State Calibrations

Figures 4.1-4.5 show differences between model predictions (L0023J) and the
STEP engine data compressor performance for nominal, 6° closed, and 6° open
Stage 1 variable vane deviations. Lynn pre-shipment performance is also shown.

Figures 4.1 shows that the compressor flow at speed is quite low relative to
prediction (approximately 10%4). This is attributed to the fact that tip
clearances were deliberately increased for the last three axial stages in
order to avoid stall problems from the anticipated severe testing. The NASA
flow at speed was about 3% high relative to the Lynn calculation. This
difference results from Lynn using the measured P2 for performance
calculations while NASA used the calculated P2. The calculated P2 agrees with
cycle predictions (as it should), and it is believed that the measured P2 is
high because of pressure profiles. Figure 4.6 shows comparisons between
measured and predicted compressor corrected flow after the prediction flow is
debited by 10%. The measured versus the predicted off angle effects now agree
quite closely.

Figures 4.2 and 4.3 show that the measured pressure ratio is extremely high
for both the axial and overall compressor. Measurement errors are suspected
since the compressor would be close to stall at these pressure ratio levels.

Figures 4.4 and 4.5 show axial and overall efficiency trends. The measured
overall efficiency is 3-4 points higher than prediction while the axial
efficiency has about the same level. Both exhibit different off angle effects
from prediction. Since pressure measurement errors are suspected, modeling
changes did not seem warranted.
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Since NASA suspected a possible leak in the scanivalve PS3 reference pressure
(which would cause the apparent PS3 to be high), it was decided to use the
PS1G PS3 transducer measurement to reduce the data. Figures 4.7 and 4.8 show
overall compressor ratio and overall compressor efficiency using these '
measurements. This makes much closer agreement relative to prediction. Also,
the HPT nozzle flow function level looks much closer to that expected for a
»YT" Black Hawk nozzle as shown in Figure 4.9.

Note that the calculated flow function dips by up to 5% at low speeds. This
dip correlates with the same speed as the starting bleed valve. An overboard
leak in the starting bleed valve flow (approximately 50%) could explain this
phenomenon.

4.2.2 Hysteresis Effects

Figure 4.10 shows that maximum stage 1 hysteresis is about 4-6 degrees. The
flow difference of 8-10% as shown in Figure 4.11 is consistent with the flow
difference observed in Figure 4.7 lending creditability to the 4-6 degree
hysteresis. T700 experience would predict maximum hysteresis of 3-4 degrees
for a nominal engine.

4.2.3 Starting Bleed/Anti-icing Bleed Flow Fraction

Figure 4.12 shows the stage 1 effect on starting bleed as a function of
compressor corrected speed. This curve is required for data reduction. When
of f-schedule variable vanes are employed, the flow fraction changes with
variable vane changes because the bleed valve and variable vanes work off the
same actuator. The NASA data reduction already includes a bleed fraction
schedule as a function of speed and variable vane bias (supplied by GE) but
this curve is a refinement.

5.0 Conclusions

5.1 Modern Control Power Turbine Governor

A high performance power turbine speed governor was designed for a recent
technology turboshaft engine coupled to an advanced, articulated helicopter
rotor system. Modern control system design techniques were used to obtain a
higher-bandwidth system than previously achievable. The Linear Quadratic
Regulator (LQR) technique was used to design the governor, and a Kalman Filter
(KF) was included in the control system to estimate the helicopter main rotor
blade velocity used in the LQR governor. The effect of the LQR governor in
the frequency domain is to attenuate the resonant peak caused by the
interaction of the helicopter main rotor and the power turbine. The LQR
governor provides adequate phase and gain margins for good stability and
robustness. The resonant peak attenuation, combined with large phase margin,
allows the system gain to be higher and results in the increased bandwidth.
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The higher bandwidth translates directly into better performance in the time
domain. Two load bursts and two load chops were simulated to compare the LQR
governor to the current, baseline governor. The simulations were done with a
full nonlinear engine model and a simplified helicopter rotor model. One
burst and one chop were a 490 shaft horsepower change in demand in 0.1 s with
no anticipation of the change in demand going to the controller. This would
simulate a wind gust load or a cyclic pitch change with constant collective
pitch. The LQR governor reduced power turbine speed droop and overshoot up to
25%. The other burst and chop were a 700 shaft horsepower change in demand in
0.5 sec caused by a change in collective pitch. The collective pitch demand
was fed into the control as anticipation to help reduce power turbine speed
droop and overshoot. For these transients, the droop and overshoot was
reduced up to 85%.

The LQR power turbine governor was analyzed with two other helicopter rotor
systems. The two systems are the Westland WG30 and the Hughes systems. The
LQR governor was designed for the Black Hawk rotor system. No modifications
were made to the governor when the rotor system was changed, because the goal
was to have one controller that would be installation independent. The LQR
controller did not attenuate the main rotor resonant peak on either the
Westland or the Hughes systems as effectively as it attenuated the Black Hawk
resonant peak. This may be due to the sharpness of the resonant peaks of
these systems compared to the Black lfawk system. Because the resonant peak is
not attenuated sufficiently, the system gain must be dropped to obtain 6dB
gain margin, and the system bandwidth will decrease. The final bandwidth is
about the same as the baseline governor and no significant performance
improvement can be expected. It is 1ikely that a different LQR governor could
be designed for each rotor system. Analysis could be done to determine if a
compromise system could perform well on any of the three rotor systems with
few or no modifications.

The LQR governor with the Black Hawk rotor system was analyzed in the
frequency domain to determine the effect of having one engine inoperative,

and the effect of reducing the lag-hinge damping to zero. The one-engine-
inoperative situation did not adversely affect stability margins and lowered
the bandwidth of the system from about 8-10 rad/sec to about 5 rad/sec. The
LQR governor did not attenuate the main rotor resonant peak when the lag-hinge
damping was reduced to zero. Performance degradation and instability could
result in this situation. It is possible that a LQR governor could be
designed to perform well in this situation and in the normal-damping situation.
Active control of the variable geometry was studied as a way of helping fuel
flow control rotor droop. A frequency response analysis showed that fuel flow
was sufficient to control power turbine speed and there was no advantage to
using variable geometry. Variable geometry was left to be controlled open
loop as a function of corrected gas generator speed.
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Significant improvements in speed governing were achieved by the LQR governor,
but engine testing and additional simulations are necessary to gain confidence
that the controller will perform as expected in flight test. Engine testing
is scheduled for the LQR governor with a dynamometer. The primary goals of
this testing program are to verify that the controller will govern power
turbine speed and to validate the analysis done in the time and frequency
domains. The time simulations of the LQR governor with a dynamometer load did
not show consistent improvement over the baseline governor. Performance is
not critical for this test, however, since the governor was designed for a
helicopter rotor system and was only made stable for test cell operation.
performance was not optimized for a dynamometer load. Other tests that should
be done prior to flight test are time simulations with an accurate, nonlinear
helicopter rotor system model and tie-down tests with a helicopter.

5.2 Linear Model Identification

pseudo-Random Binary Noise (PRBN) testing of a NASA YT700 engine was performed
to illustrate the use of PRBN testing as an accurate and expedient method of
engine frequency response data compared to traditional testing methods.
Separate spectral analysis and maximum likelihood (ML) model identification
techniques were used to recover engine frequency response characteristics from

engine test data.

5.2.1 Spectral Analysis

Discrepancies were seen between the engine frequency response data obtained
through spectral analysis and NASA discrete sine wave test data. The
magnitude of the spectral analysis results is consistently lower than that of
engine frequency response. The smoothed spectral density is considerably
underestimated for a relatively low number of time lags T used in the
spectral analysis algorithms. Software 1imitations restrict the maximum
number of lags to 500. For a one minute sample slice of 12,000 data points
(200 Hz sampling rate) the maximum number of lags is only 4% of the number of
data points compared to a recommended 5% to 20%. The magnitude, break
frequency and, consequently, the phase of the frequency responses are quite
biased under these conditions.

The results of the spectral analysis were useful, however, in verifying the
white noise approximations made concerning the PRBN signal, and the stationary
assumptions made concerning the engine test. Spectral analysis results were
aIS?dus$d to verify the accuracy of the ML identified models by testing the
residuals.
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5.2.2 Maximum Likelihood Model Identification

The ML frequency response data compared well with the NASA discrete frequency
points used as the benchmark for evaluating the ML identified frequency
responses. The ML model for NG/WF compared very well with the NASA test
data. The model residuals are white noise with a 95% degree of confidence,
verifying the accuracy of the ML model.

The ML model residuals for Np/WF, however, are not white noise with a 95%
degree of confidence. A better correlation could be achieved with a higher
order ML model. Software limitations restrict the identification to an eigth
order model, however. The slight divergence between the ML frequency response
data and discrete frequency points for Np/WF could be attributed, in part, to
the less than optimal Np/WF model.

5.2.3 Linear Models

A linear model of the T700 engine was compared to a reduced-order engine model
obtained from the ML results in order to evaluate the accuracy of the linear
model.

5.2.3.1 NG/WF

The 1inear model compares well with the ML model for NG/WF. There is less
than a 3db difference in magnitude, and approximately a 10 degree difference
in phase at 10 rad/sec. An additional lag appears in the engine frequency
response at approximately 30 rad/sec. These higher frequency dynamics are
neglected in the linear model. Physically, these dynamics could be attributed
to a lag from fuel flow introduction to torque produced at the gas generator
due to the compressibility of air.

The correlation between the linear model and the engine (represented by the ML
model frequency response) is adequate in the frequency range of interest.
Consequently, no further investigation into the source of these higher
frequency dynamics is warranted.

5.2.3.2 Np/WF

The linear model compares well with the ML model out to approximately

1 rad/sec for Np/WF. Higher frequency dynamics produce considerably more
phase lag than is indicated by the 1inear model. The divergence of the linear
model response from that of the actual engine is attributed, in part, to the
linear model dynamometer representation. The contribution of the dynamometer
damping to the phase lag observed in the engine may be inadequately modeled.
Consequently, additional work could be focused on identifying the actual
dynamometer frequency response using techniques similar to those outlined in
this report. The accuracy of the linear model at higher frequencies becomes
significant when implementing high performance Np governors, and a better
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understanding of the dynamometer transient characteristics is essential to the
model accuracy. Other higher frequency dynamics in the engine not accounted
for in the linear model, may be contributing to the discrepancies between the

ML and linear model.

5.3 Variable Geometry Off-Schedule Model Validation

A T700 engine was tested at NASA-Lewis for the purpose of investigating
compressor variable guide vane (stage 1) off angle effects.

Steady-state test data of the variable geometry (VG) was obtained with the
nominal VG schedule, 6 degrees off-schedule in the open direction, and 6

degrees off-schedule in the closed direction conditions. This performance
data was compared with data obtained from T700 transient model simulations.

Analysis of the off-schedule VG steady-state test data indicates that the
original model of the VG contained in the T700 DISCUS transient deck is
adequate and should not be altered.

The data showed that current compressor flow/speed off angle effects modeling
is adequate but that validity of NASA STEP engine measurements required for
compressor pressure ratio and efficiency calculations are suspect, thus

precluding proper analysis of these effects. Also, improved data reduction
calculations of bleed fractions to account for off angle effects were used.
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Appendix I. Comparison of Simplified and Complex Rotor System Bode
Plots for Black Hawk, Hughes, and Westland WG30.
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Figure I.1 Bode Plot of Black Hawk Rotor System Frequency
Response from d(WF)/dt Input to Np Output.
Simplified Rotor System.
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Figure I.3 Bode Plot of Hughes Rotor System Frequency Response from
d(WF)/dt Input to Np Output. Simplified Rotor System.
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Figure 1.5

Bode Plot of Westland and WG30 Rotor System Frequency Response
from d(WF)/dt Input to Np Output. Simplified Rotor System.
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Figure 1.6

w rad/sec

Bode Plot of Westland WG30 Rotor System Frequency Response
from d(WF)/dt Input to Np Output. Complex Rotor System.
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Appendix 1I. Engine and Black Hawk Helicopter System Parameters.

196



Table II.1 Unbalanced Torque Partial Derivatives for T700

Case ]
/L
Ng 73.7
Np 20900
Wf 156
T4.5 1387
Ps3 69
SHP 0
Q 0
3A/ &8
A B
Qg Ng -.0025
Qp Ng +.0022
T4.5 Ng -.034
Ps3 Ng +.0037
Qg Np* -.00035
Qp Np -.0041
T4.5 Np* +.0019
Ps3  Np* -
Qg Wf +.26
Qp Wf  +.25
T4.5 Wf +4.68
Ps3 Wf +.070
0 Qg VG +.37
PQp V& =-.22
ET4.5 VG +1.4
NPs3 VG -.24
C Qg VG +.30
L Qp VG -.24
‘ 0 T4.5 V@ +4.8
SPs3 VG -.43
E
D

*Neglect these terms as they are close to deck tolerance.

2 3 4 5 6
IRe

83.0 90.0 95 97.2 100.0
20900 20900 20900 20900 20900
219 420 687 772 831
1439 161 1887 1968 2054
96 165.7 224 241 255
155 763 1494 1709 1822
40.8 200.8 393.2 450.0 479.4
-.0090 -.017 -.029 -.01 -.0068
+.012 +.029 +.042 +.011 +.0050
-.063 -.066 -.070 +,0073 +.0070
+,0093 +.016 +.020 +.0045 +.0020
+.0001 -.00070 -.001 -.0010 -.0009
-.0060 -.0090 -.014 -.015 -.015

- +.0019 +.002 +.002 +.0019
+.24 +.21 +.18 +.17 +.165
+.29 +.35 +.35 +.36 +.35
+3.27 +1.87 +1.45 +1.31 +1.29
+.070 +.082 +.076 +.077 +.076
+1.46 +2.65 +3.05 +1.33 +.43
-1.82 -4.00 -4.90 -1.02 -.27
+7.80 +7.40 +6.60 -1.40 -.60
-1.34 -2.05 -2.13 -.33 -.09
+1.92 +4.18 +.19 +1.99 +.32
-2.65 -7.33 -10.16 -1.69 -.21
+14.40 +17.30 +14.30 -1.30 -.50
-1.98 -3.85 -4.42 -.60 -.05
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Units

%
RPM
PPH
°R
PSIA
SHP
FT-LB

FT-LB/RPM
FT-LB/RPM
°R/RPM
PSI/RPM

/RPM

/PPH

/DEG

/DEG



Table II.2 Typical VTOL Rotor Constants - Black Hawk

System Parameters

Parameters Units Values Units

Moments of Inertia

JG Gas Generator FT-LB SEC2 .0445 X 27 .00466 FT-LB-SEC
RAD 60 RPM

JPT Power Turbine .062 .00649

JT Transmission .0334 .0035

JMR Main Rotor 1.0531 1103

JTR Tail Rotor .0514 .00538

Spring Constants

KMR Main Rotor FT-LB/RAD 50.28 5.265 FT-LB

KTR Tail Rotor 60.12 6.296 RPM-SEC

Damging

DMR Main Rotor FT-LB SEC 1.38 Min. .1445 FT-LB
RAD RPM

DAM Aero-Main l 4775 .05 l

DAT Aero-Tail 0191 .002
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Nomenclature - Section 2

System Weighting Matrices

Expected value

LQR gain matrix

Transfer function

Identity matrix

LQR cost functional

Kalman filter gain matrix

Kalman filter

Load demand spindle

Transformed LQR gain matrix

Linear quadratic regulator

Gas generator speed

Helicopter main rotor blade velocity

Power turbine speed

LQR state weighting matrix

Helicopter rotor torque state

Engine shaft torque

LQR input weighting matrix

Solution of Algebraic Ricatti equation
Laplace operator, pole location in s-plane
Sampling period (sec)

System input vector

Kalman filter process noise variance matrix
Kalman filter measurement noise variance matrix
Fuel flow

System state matrix

System output matrix

Pole location in z-plane

Scalar multiplier on KF measurement noise variance matrix
Input vector angle

Lag hinge angle

Time constant

State transition matrix

Output vector angle

Estimated
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Nomenclature - Sections 3 & 4

Characteristic polynomial
Input polynomial coefficient
Residual polynomial
Dynamometer damping

Expected value

Even function

Transfer function

Maximum 1ikelihood model transfer function
Imaginary part of Syy
Dynamometer inertia

Gas turbine inertia

Power turbine inertia

‘Lumped power turbine/dynamometer inertia

Number of discrete data samples

Gas turbine speed

Power turbine speed

0dd function

Available gas torque

Available power turbine torque
Autocovariance function discrete time estimate
Cross-covariance function discrete time estimate
Real part of Syy

Smoothed spectral estimate of cross-spectrum
Sample period '

Loss function

Blackman-Harris window

Fuel flow

Residual

Mean value of x

Mean value of y

Number of inputs

Normalized autocovariance function
Normalized cross-covariance function
Complex variable

Stochastic stationary process input
Sample mean of x

Stochastic stationary process output
Z-transform

Partial derivative

Autospectrum

Cross-spectrum

Lambda

Autocovariance function

Cross-covariance function

Loss function parameter

Lag - difference between two time periods
Frequency (rad/sec)

Temperature correction factor
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was used to estimate helicopter main-rotor blade velocity. Compared to the base-
line T700 power turbine speed governor, the LQR governor reduced droop up to 25%
for a 490 shaft horsepower transient in 0.1 sec simulating a wind gust, and up to
85% for a 700 shaft horsepower transient in 0.5 sec simulating a large collective
pitch angle transient.
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